CA FINAL

STRATEGIC FINANCIAL MANAGEMENT

CHALLENGER SERIES
Portfolio Management

PROBLEM - 1

Mr. Dinesh Gupta has gathered the following information relating to six stocks. The risk free rate is 7%, return on the market index is 12% and variance of the return on the index is $25 \%^{2}$.

Stock	Alpha (\%)	Unsystematic risk (\%) $^{\mathbf{2}}$	Total Risk (\%) $^{\mathbf{2}}$
BHEL	2.10	45	75
HLL	1.25	15	40
Cipla	1.30	14	42
HDFC	1.45	20	55
ACC	0.95	14	32
L\&T	0.82	16	35

You are required to
Construct a portfolio using Sharpe's portfolio optimization model.

Solution :

To calculate the expected return, beta of each stock should be estimated.
This can be calculated using the following relation:
Systematic risk $=$ Total risk - Unsystematic risk $=\beta^{2} \sigma_{m}^{2}$

$$
\beta_{\mathrm{i}}=\left[\frac{\text { Systematic Risk }}{\sigma_{\mathrm{m}}^{2}}\right]^{1 / 2}
$$

Stock	Systematic risk (\%) ${ }^{2}$	$\beta_{\mathrm{i}}=\left(\frac{\text { Systematic risk }}{\sigma_{\mathrm{m}}^{2}}\right)^{1 / 2}$
BHEL	30	$(30 / 25)^{1 / 2}=1.095$
HLL	25	$(25 / 25)^{1 / 2}=1.000$
Cipla	28	$(28 / 25)^{1 / 2}=1.058$
HDFC	35	$(35 / 25)^{1 / 2}=1.183$
ACC	18	$(18 / 25)^{1 / 2}=0.849$
L\&T	19	$(19 / 25)^{1 / 2}=0.872$

Stock	Expected return $\mathrm{R}_{\mathrm{i}}=\left(\alpha+\beta \mathrm{R}_{\mathrm{m}}\right)$	β_{i}	$\left(\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}\right)$	$\frac{\left(\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}\right)}{\beta_{\mathrm{i}}}$	Rank
BHEL	15.240	1.095	8.240	7.525	
HLL	13.250	1	6.250	6.250	4
Cipla	14.000	1.058	7.000	6.616	3
HDFC	15.646	1.183	8.646	7.309	2
ACC	11.138	0.849	4.138	4.874	5
L\&T	11.284	0.872	4.284	4.913	6

Rank	Security	β_{i}	$\sigma_{\mathrm{ei}}{ }^{2}$	$\left(\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}\right)$	$\frac{\left(\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}\right) \beta_{\mathrm{i}}}{\sigma_{\text {ei }}^{2}}$	$\frac{\beta_{\mathrm{i}}{ }^{2}}{\sigma_{\mathrm{ei}}^{2}}$
1	BHEL	1.095	45	8.240	0.200	0.0270
2	HDFC	1.183	20	8.646	0.511	0.0700
3	Cipla	1.058	14	7.000	0.529	0.0800
4	HLL	1	15	6.250	0.417	0.0670
5	L\&T	0.872	16	4.284	0.233	0.0475
6	ACC	0.849	14	4.138	0.251	0.0515

$\sum_{\mathrm{i}=1}^{\mathrm{i}} \frac{\left(\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}\right) \beta_{\mathrm{i}}}{\sigma_{\mathrm{ei}}^{2}}$	$\sum_{\mathrm{i}=1}^{\mathrm{i}} \frac{\beta_{\mathrm{i}}^{2}}{\sigma_{\mathrm{ei}}^{2}}$	$1+\sigma_{\mathrm{m}}{ }^{2} \sum_{\mathrm{i}=1}^{\mathrm{i}} \frac{\beta_{\mathrm{i}}{ }^{2}}{\sigma_{\mathrm{ei}}{ }^{2}}$	$\sigma_{\mathrm{m}}{ }^{2} \sum_{\mathrm{i}=1}^{\mathrm{i}}\left(\frac{\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}}{\sigma_{\mathrm{ei}}{ }^{2}}\right) \beta_{\mathrm{i}}$	C
0.200	0.027	1.675	5.000	2.985
0.711	$0 . .097$	3.425	17.775	5.189
1.240	0.177	5.425	31.000	5.714
1.657	0.244	7.100	41.425	5.834^{*}
1.890	0.291	8.280	47.250	5.706
2.141	0.343	9.575	53.525	5.590

Where
$\mathrm{C}=\frac{\sigma_{\mathrm{m}}{ }^{2} \sum_{\mathrm{i}=1}^{\mathrm{i}} \frac{\left(\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}\right)}{\sigma_{\mathrm{ei}}{ }^{2}}}{1+{\sigma_{\mathrm{m}}}^{2} \sum_{\mathrm{i}=1}^{\mathrm{i}} \frac{\beta_{\mathrm{i}}{ }^{2}}{\sigma_{\mathrm{ei}}{ }^{2}}}$
$\mathrm{Z}_{\mathrm{i}}=\frac{\beta_{\mathrm{i}}}{\sigma_{\mathrm{ei}}{ }^{2}}\left[\frac{\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}}{\beta_{\mathrm{i}}}-\mathrm{c}^{*}\right]$
$\mathrm{Z}_{1}=\frac{1.095}{45}[7.525-5.834] \quad=0.0411$
$\mathrm{Z}_{2}=\frac{1.095}{45}[7.309-5.834] \quad=0.0872$
$\mathrm{Z}_{3}=\frac{1.058}{14}[6.616-5.834]=0.0591$
$\mathrm{Z}_{4}=\frac{1}{15}[6.25-5.834] \quad=0.0277$
$\sum_{i=1}^{i} Z_{i}=0.2151$

Security	Proportions	
BHEL	$\frac{0.0411}{0.2151}=0.1910$	19.10%
HDFC	$\frac{0.0872}{0.2151}=0.4054$	40.54%
Cipla	$\frac{0.0591}{0.2151}=0.2748$	27.48%
HLL	$\frac{0.0277}{0.2151}=0.1288$	12.88%

PROBLEM - 2

A market analyst has estimated probable returns under different macroeconomic conditions of the following three stocks:

S. Stock	Current price	Rate of return (\%)		
	(Rs.)	Recession	Moderate Growth	Boom
Polar Informatics	18	-15	10	25
Season Biotech	20	15	8	-4
Good Value Ltd.	76	17	20	12

He is exploring if it is possible to make any arbitrage profits from the above information.

Required:

Using the above information construct an arbitrage portfolio and show the payoffs under different economic scenarios.

Solution :

Arbitrage portfolio can be constructed by selling 2 stock of Polar Industries and Shania biotech and buying one stock of Good value Ltd.

Market price of the stocks under different scenarios.

	Recession	Moderate Growth	Boom
Polar Informatics	15.30	19.80	22.50
Season Biotech	23.00	21.60	19.20
Good Value Ltd.	88.92	91.20	85.12

Return

	Recession	Moderate Growth	Boom
Sell 2 stock of Polar	-15.30×2	-19.80×2	-22.50×2
Sell 2 stock of season Biotech	-23.00×2	-21.60×2	-19.20×2
Buy one stock of Good value	88.92	91.20	85.12
	12.32	8.40	1.72

PROBLEM - 3

An investor holds the following stocks in his portfolio. All these stocks were purchased on March 1, 2002 at the following prices:

Name of the company	No. of shares	Price per share
Sonata Cements	1000	Rs.28.00
J. K. Cosmetics	4000	Rs. 7.00
Prism Tyres	2000	Rs.14.00
Sonal Software	500	Rs.56.00

The correlation coefficients of these stocks' return with the market and their standard deviation of returns were as follows:

	Standard Deviation	Correlation Coefficient with the market index
Sonata Cements	20%	0.95
J. K. Cosmetics	18%	0.85
Prism Tyres	14%	0.72
Sonal Software	11%	0.45

On February 28, 2003, the market prices and standard deviation of the returns of these four stocks were as follows:

Name of the company	Price per share	Standard Deviation (\%)
Sonata Cements	Rs.34.00	22.00%
J. K. Cosmetics	Rs. 5.50	17.00%
Prism Tyres	Rs.10.00	15.50%
Sonal Software	Rs.70.00	12.50%

If the standard deviations of market's return is constant at 15% and assuming that correlation coefficients of stock's returns with the market index remains unchanged during last year, estimate the changes in the proportions of systematic and unsystematic risk of the portfolio.
(The covariance of returns between two stocks is product of their betas and market variance.)

Solution :

Total investment

Sonata Cements	1000×28	28000
J. K. Cosmetics	4000×7.00	28000
Prism Tyres	2000×14.00	28000
Sonal Software	500×56.00	28000
		112000

Equal amount of investment is made in each of the stocks.
Beta of stocks $=\rho \frac{\sigma_{i}}{\sigma_{m}}$
20 Sonata Cements, $\beta_{\mathrm{SC}}=0.95 \times \frac{20}{15}=1.267$
J. K. Cosmetics , $\beta_{\mathrm{JK}}=0.85 \times \frac{18}{15} \quad=1.02$

Prism Tyre, $\beta_{\text {PT }} \quad=\quad 0.72 \times \frac{14}{15} \quad=0.672$
Sonal Software, $\beta_{\mathrm{SS}} \quad=\quad 0.45 \times \frac{11}{15} \quad=0.33$
Portfolio Beta, $\beta_{\mathrm{P}}=\frac{1}{4}(1.267+1.02+0.672+0.33)$
$=0.82225$.

Systematic risk of the portfolio

$=\beta_{\mathrm{p}}^{2} \sigma_{\mathrm{m}}^{2}$
$=(0.8225)^{2} \times(15)^{2}$
$=152.03(\%)^{2}$.
To calculate two stocks we have to use the following formula
$\operatorname{Cov}_{\mathrm{JK}}=\beta_{\mathrm{J}} \beta_{\mathrm{K}} \sigma_{\mathrm{m}}^{2}$
$\operatorname{Cov}_{\mathrm{SJ}}=1.267 \times 1.02 \times 225=290.78(\%)^{2}$
$\operatorname{Cov}_{\mathrm{BP}}=\quad 1.267 \times 0.672 \times 225=191.57(\%)^{2}$
$\mathrm{Cov}_{\mathrm{ss}}=1.267 \times 0.33 \times 225=94.07(\%)^{2}$
$\operatorname{Cov}_{\text {JP }}=1.02 \times 0.672 \times 225=154.224(\%)^{2}$
$\operatorname{Cov}_{\mathrm{JS}}=1.02 \times 0.33 \times 225=75.735(\%)^{2}$
$\operatorname{Cov}_{\mathrm{PS}}=0.672 \times 0.33 \times 225=49.90(\%)^{2}$

Total risk of the portfolio

$$
\begin{aligned}
= & (0.25)^{2} \times(20)^{2}+(0.25)^{2} \times(18)^{2}+(0.25)^{2} \times(14)^{2}+(0.25)^{2} \times(11)^{2}+\frac{1}{16}(2 \times 290.78+2 \times 191.57+ \\
& 2 \times 94.07+2 \times 154.224+2 \times 75.725+2 \times 49.90) \\
= & 25+20.25+12.25+7.5625+\frac{1}{16}(581.56+383.14+188.14+308.448+151.47+99.8) \\
= & 65.0625+107.034=172.097(\%)^{2}
\end{aligned}
$$

$$
\text { Unsystematic risk } \quad=172.097-152.03=20.067(\%)^{2}
$$

$$
\text { Proportion of Systematic risk }=\frac{152.03}{172.097}=88.34 \%
$$

Unsystematic risk

$$
=\frac{20.067}{172.097}=11.66 \% .
$$

After one year

When the price of stock changes, the weightage of the stocks value also changes and as the S.D. of the stock changes their beta also changes.

Investment value

Sonata Cements	34×1000	34000
J.K. Cosmetics	5.50×4000	22000
Prism Tyres	10×2000	20000
Sonal Software	70×500	35000
		111000

New Weights of the stocks in the portfolio

Sonata Cements	$34000 / 111000$	0.306
J.K. Cosmetics	$22000 / 111000$	0.198
Prism Tyres	$20000 / 111000$	0.18
Sonal Software	$35000 / 111000$	0.316

Beta of the stock after one year

Sonata Cements	$0.95 \times \frac{22}{15}$	1.393
J.K. Cosmetics	$0.85 \times \frac{17}{15}$	0.9633
Prism Tyres	$0.72 \times \frac{15.5}{15}$	0.794
Sonal Software	$0.45 \times \frac{12.5}{15}$	0.375

New Covariances between Stock's return
$\operatorname{Cov}_{\mathrm{SJ}}=1.393 \times 0.9633 \times 225=301.922$
$\operatorname{Cov}_{\mathrm{SP}}=1.393 \times 0.744 \times 225=227.137$
$\operatorname{Cov}_{\text {SS }}=1.393 \times 0.375 \times 225=397.8$
$\operatorname{Cov}_{\mathrm{JP}}=0.9633 \times 0.744 \times 225=161.256$
$\operatorname{Cov}_{\mathrm{JS}}=0.9633 \times 0.375 \times 225=81.278$
$\operatorname{Cov}_{\text {PS }}=0.744 \times 0.375 \times 225=62.775$
New total risk of the portfolio

$$
\begin{aligned}
& (0.306)^{2} \times(22)^{2}+(0.198)^{2} \times(17)^{2}+(0.18)^{2} \times(15.5)^{2}+(0.316)^{2} \times(12.5)^{2}+2 \times 0.306 \times 0.198 \times 301.922+2 \\
& \times 0.306 \times 0.18 \times 227.137+2 \times 0.306 \times 0.316 \times 397.8+2 \times 0.198 \times 0.18 \times 116.256+2 \times 0.198 \times 0.316 \times \\
& 81.278+2 \times 0.186 \times 0.316 \times 62.775=244.41(\%)^{2}
\end{aligned}
$$

Portfolio beta
$=0.306 \times 1.393 \times 0.9633 \times 0.198+0.18 \times 0.744+0.316 \times 0.375=0.8694$.
Systematic risk of the portfolio
$=\quad \beta_{\mathrm{p}}^{2} \sigma_{\mathrm{m}}^{2}$
$=(0.8694)^{2} \times(15)^{2}=170.067(\%)^{2}$.
Unsystematic risk $=170.067-244.41=74.34(\%)^{2}$.
Proportion of systematic risk $=\frac{(170.067)}{244.41}=0.696=69.6 \%$.
Unsystematic risk $=\frac{74.34}{244.41}=0.304=30.4 \%$.
Clearly proportion of systematic has decreased from 88.34% to 69.6% and unsystematic risk has increased from 11.68% to 30.4%.

PROBLEM - 4

The following data is related to returns on three stocks and market index for a period of last 6 years:

Year	Sheetal Corp.	Alkem Ltd.	Standard Investment	Market Index
1	10%	4%	3%	5.0%
2	12%	7%	4%	6.0%
3	16%	19%	8%	7.5%
4	18%	13%	11%	10.2%
5	20%	29%	12%	13.0%
6	23%	35%	15%	17.0%

You are required to
a. Construct a minimum risk portfolio of two stocks, assuming that short selling is not allowed.
b. Determine the correlation of the portfolio with the market index if a portfolio of all three stocks with equal proportion is being constructed.

Solution :

a.

Year	R_{s}	R_{a}	R_{st}	R_{m}	$\left(\mathrm{R}_{\mathrm{s}}-\overline{\mathrm{R}}_{\mathrm{s}}\right)$ (a)	$\left(\mathrm{R}_{\mathrm{a}}-\overline{\mathrm{R}}_{\mathrm{a}}\right)$ (b)	$\left(\mathrm{R}_{\mathrm{st}}-\overline{\mathrm{R}}_{\mathrm{st}}\right)$ (c)	$\left(\mathrm{R}_{\mathrm{m}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)$ (d)
1	10	4	3	5	-6.5	-13.84	-5.83	-4.78
2	12	7	4	6	-4.5	-10.84	-4.83	-3.78
3	16	19	8	7.5	-0.5	1.16	-0.83	-2.28
4	18	13	11	10.2	1.5	-4.84	2.17	0.42
5	20	29	12	13	3.5	11.16	3.17	3.22
6	23	35	15	17	6.5	17.16	6.17	7.22
Σ	99	107	53	58.7				
Mean	16.5	17.84	8.83	9.78				

$\left(\mathrm{R}_{\mathrm{s}}-\overline{\mathrm{R}}_{\mathrm{s}}\right)^{2}$	$\left(\mathrm{R}_{\mathrm{a}}-\overline{\mathrm{R}}_{\mathrm{a}}\right)^{2}$	$\left(\mathrm{R}_{\mathrm{st}}-\overline{\mathrm{R}}_{\mathrm{st}}\right)^{2}$	$\left(\mathrm{R}_{\mathrm{m}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)^{2}$	axd	bxd	cxd
42.25	191.55	33.94	22.85	31.07	66.16	27.87
20.25	117.51	23.33	14.29	17.01	40.98	18.30
0.25	1.3456	0.69	5.198	1.14	-2.645	1.892
2.25	23.426	4.71	0.176	0.63	-2.033	0.911
12.25	124.55	10.05	10.37	11.27	35.94	10.21
42.25	294.47	38.07	52.13	46.93	123.9	44.55
119.5	752.83	110.77	105.01	108.05	262.3	103.7

$$
\begin{array}{lll}
\overline{\mathrm{R}}_{\mathrm{s}}=\frac{99}{6}=16.5 & \sum\left(\mathrm{R}_{\mathrm{s}}-\overline{\mathrm{R}}_{\mathrm{s}}\right)^{2}=119.5 & \sum\left(\mathrm{R}_{\mathrm{s}}-\overline{\mathrm{R}}_{\mathrm{s}}\right)\left(\mathrm{R}_{\mathrm{m}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)=108.05 \\
\overline{\mathrm{R}}_{\mathrm{a}}=\frac{107}{6}=17.84 & \sum\left(\mathrm{R}_{\mathrm{a}}-\overline{\mathrm{R}}_{\mathrm{a}}\right)^{2}=752.83 & \sum\left(\mathrm{R}_{\mathrm{a}}-\overline{\mathrm{R}}_{\mathrm{a}}\right)\left(\mathrm{R}_{\mathrm{m}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)=262 \\
\overline{\mathrm{R}}_{\mathrm{st}}=\frac{53}{6}=8.84 & \sum\left(\mathrm{R}_{\mathrm{st}}-\overline{\mathrm{R}}_{\mathrm{st}}\right)^{2}=110.83 & \sum\left(\mathrm{R}_{\mathrm{st}}-\overline{\mathrm{R}}_{\mathrm{st}}\right)\left(\mathrm{R}_{\mathrm{m}}-\overline{\mathrm{R}}_{\mathrm{m}}\right)=103.7 \\
\overline{\mathrm{R}}_{\mathrm{m}}=\frac{58.7}{6}=9.78 & \sum\left(\mathrm{R}_{\mathrm{s}}-\overline{\mathrm{R}}_{\mathrm{s}}\right)^{2}=105.01 &
\end{array}
$$

$\sigma_{\mathrm{s}}=\sqrt{\frac{119.5}{6}=4.46}$
$\sigma_{\mathrm{m}}=\sqrt{\frac{105}{6}=4.18}$
$\operatorname{Cov}_{\text {sm }}=\frac{108}{6}=18$
$\sigma_{a}=\sqrt{\frac{752.83}{6}}=11.20$
$\operatorname{Cov}_{\mathrm{am}}=\frac{262.3}{6}=43.72$
$\sigma_{\mathrm{st}}=\sqrt{\frac{110.83}{6}}=4.30$
$\operatorname{Cov}_{\text {stm }}=\frac{103.7}{6}=17.28$

Beta of the stocks

$$
\begin{aligned}
& \beta_{\mathrm{s}}=\frac{18}{17.47}=1.03 \\
& \beta_{\mathrm{a}}=\frac{43.72}{17.47}=2.5 \\
& \beta_{\mathrm{st}}=\frac{17.28}{17.47}=0.99
\end{aligned}
$$

Covariance between two stock can be calculated
$\operatorname{Cov}_{x y}=\beta_{x} \beta_{y} \sigma_{m}^{2}$
$\operatorname{Cov}_{\mathrm{SA}}=\beta_{\mathrm{s}} \beta_{\mathrm{a}} \sigma_{\mathrm{m}}^{2}$
$=1.03 \times 2.5 \times 17.47=44.98(\%)^{2}$
$\operatorname{Cov}_{\mathrm{sst}}=\beta_{\mathrm{s}} \beta_{\mathrm{st}} \sigma_{\mathrm{m}}^{2}$
$=1.03 \times 0.99 \times 17.47=17.81(\%)^{2}$
$\operatorname{Cov}_{\text {ast }}=\beta_{\mathrm{a}} \beta_{\mathrm{st}} \sigma_{\mathrm{m}}^{2}$
$=2.5 \times 0.99 \times 17.47=43.24(\%)^{2}$
Correlation coefficient between stocks
$\rho_{\mathrm{sa}}=\frac{44.98}{4.46 \times 11.20}=0.9$
$\rho_{\text {sst }}=\frac{17.81}{4.46 \times 4.30}=0.93$
$\rho_{\text {ast }}=\frac{43.24}{11.20 \times 4.30}=0.9$

For $\min ^{m}$ risk portfolio

$$
\begin{aligned}
& \rho_{\mathrm{AB}}<\frac{\sigma_{\mathrm{A}}}{\sigma_{\mathrm{B}}} \text { where } \sigma_{\mathrm{A}}<\sigma_{\mathrm{B}} \\
& \rho_{\mathrm{sa}}=0.90>\frac{4.46}{11.20} \\
& \rho_{\text {sst }}=0.93<\frac{4.30}{4.46}=0.96
\end{aligned}
$$

This satisfies the condition

$$
\rho_{\mathrm{ast}}=0.90>\frac{4.30}{11.20}=0.38
$$

Only combination of Sheetal Corporation and Standard investment is fulfilling the criteria and minimum risk portfolio can be formed using these two stocks.
b. Portfolio beta

$$
\beta_{\mathrm{p}}=\frac{1.03+2.5+0.99}{3}=1.51
$$

Correlation of portfolio with respect to market index

$$
\begin{aligned}
& \beta_{\mathrm{p}}=\rho_{\mathrm{p}} \frac{\sigma_{\mathrm{p}}}{\sigma_{\mathrm{m}}} \\
& \quad \rho_{\mathrm{p}}=\frac{\beta_{\mathrm{p}} \sigma_{\mathrm{m}}}{\sigma_{\mathrm{p}}}=\frac{1.51 \times 4.58}{\sigma_{\mathrm{p}}}
\end{aligned}
$$

Portfolio risk

$\sigma_{\mathrm{p}}^{2}=\left(\frac{1}{3}\right)^{2} \times(4.46)^{2}+\left(\frac{1}{3}\right)^{2} \times(11.20)^{2}+\left(\frac{1}{3}\right)^{2} \times(4.30)^{2}+2 \times \frac{1}{3} \times \frac{1}{3} \times 44.98+2 \times \frac{1}{3} \times \frac{1}{3} \times 17.81+2 \times \frac{1}{3} \times \frac{1}{3} \times 43.24$
$\sigma_{p}^{2}=41.76$
$\sigma_{p}=6.4626$

Correlation of the portfolio

$\rho_{\mathrm{p}}=\frac{1.51 \times 4.18}{6.4626}=0.98$

PROBLEM - 5

There are four stocks A, B, C and D. The returns on these stocks can be explained using three factors viz. long-term interest rates $\left(\beta_{1}\right)$, oil prices $\left(\beta_{2}\right)$ and exchange rates $\left(\beta_{3}\right)$. The average rate of return and the sensitivity of returns on these stocks to the three factors is given below:

Stocks	$\boldsymbol{\beta}_{\mathbf{1}}$	$\boldsymbol{\beta}_{\mathbf{2}}$	$\boldsymbol{\beta}_{\mathbf{3}}$	Average Rate of Return (\%)
A	0.20	-0.20	0.80	9.60
B	0.70	0.10	0.60	16.03
C	0	0.80	0.70	14.00
D	0.60	-0.20	0.70	13.35
Risk Premium	$?$	7%	$?$	

Required:

a. Compute the risk premium paid for each factor assuming a market at equilibrium given that the oil price risk premium is 7%.
b. Determine the β_{1} and β_{3} coefficients for the following two portfolios assuming that the portfolio is to be insensitive to the oil prices. Also suggest which portfolio is to be selected:

Stock	Proportion in Portfolio 1 (\%)	Proportion in portfolio 2 (\%)
A	12.5	50
B	25	25
C	12.5	12.5
D	50	12.5

c. The factor sensitivities for stock D are $\beta_{1}=0.32, \beta_{2}=0$ and $\beta_{3}=0.57$. The expected return on stock D is 12.35%. Is stock D correctly priced?
(Assume the risk free rate of return as 5\%)

Solution :

a. $A: 9.60=\beta_{0}+0.2 \beta_{1}-0.2 \beta_{2}+0.8 \beta_{3}$

B: $16.03=\beta_{0}+0.7 \beta_{1}+0.1 \beta_{2}+0.6 \beta_{3}$
C: $14.00=\beta_{0}+0.0 \beta_{1}+0.8 \beta_{2}+0.7 \beta_{3}$
$D: 13.35=\beta_{0}+0.6 \beta_{1-} 0.2 \beta_{2}+0.7 \beta_{3}$
Given that risk-free rate is 5% and $\beta_{2}=7 \%$
$\therefore 14=5+0+0.8 \times 7+0.7 \beta_{3}$
$\therefore \beta_{3}=4.85 \%$
Similarly, $9.6=5+0.2 \beta_{1}-0.2 \times 7+0.8 \times 4.85$
$\beta_{1}=10.6 \%$

b. Portfolio 1:

β_{1} Coefficient: $0.125 \times 0.2+0.25 \times 0.7+0.125 \times 0+0.5 \times 0.6=0.50$
β_{3} Coefficient: $0.125 \times 0.8+0.25 \times 0.6+0.125 \times 0.7+0.5 \times 0.7=0.6875$
(β_{2} has been taken as zero as the portfolio is to be insensitive to the oil prices)
$R p=0.125 \times 9.6+0.25 \times 16.03+0.125 \times 14+0.5 \times 13.35=13.63 \%$

Portfolio 2:

β_{1} Coefficient: $0.5 \times 0.2+0.25 \times 0.7+0.125 \times 0+0.125 \times 0.6=0.35$
β_{3} Coefficient: $0.5 \times 0.8+0.25 \times 0.6+0.125 \times 0.7+0.125 \times 0.7=0.725$
(β_{2} has been taken as zero as the portfolio is to be insensitive to the oil prices)
$R p=0.5 \times 9.6+0.25 \times 16.03+0.125 \times 14+0.125 \times 13.35=12.23 \%$
Portfolio 1 is better as it provides a higher return.

c. Required rate of return on portfolio

$D\left(R_{D}\right)=\beta_{0}+0.32 \beta_{1}+0.57 \beta_{3}=5+0.32 \times 10.6+0.57 \times 4.85=11.16 \%$
Since the expected return on stock D is 12.35% which is more than the required rate of return, the stock is undervalued

PROBLEM - 6

Consider the following prices of the stock of Satyam Computers Ltd and the corresponding value of the Sensex:

End of Month	Satyam Computers (Rs)	Sensex
March 2000	885.80	5001.28
April 2000	624.00	4657.55
May 2000	508.35	4433.61
June 2000	596.45	4748.77
July 2000	492.00	4279.86
August 2000	571.90	4477.31
September 2000	487.50	4085.03
October 2000	307.25	3711.02
November 2000	337.90	3997.99
December 2000	323.25	3972.12

You are required to calculate:
a. The characteristic line for stock of Satyam Computers
b. The proportions of systematic risk and unsystematic risk in the total risk of the stock of Satyam Computers

Solution :

a. The returns on Satyam Computers and sensex are as follows:

Month	Return on the stock of Satyam Computers (y) \%	$(\mathrm{Y}-\overline{\mathrm{Y}})$	$(\mathrm{Y}-\overline{\mathrm{Y}})^{2}$	Return on Sensex (x) \%	$(X-\bar{X})$	$(X-\bar{X})^{2}$	$\begin{aligned} & (\mathrm{Y}-\overline{\mathrm{Y}}) \\ & (\mathrm{X}-\overline{\mathrm{X}}) \end{aligned}$
April	-29.56	-20.88	435.974	-6.87	-4.57	20.885	95.422
May	-18.53	-9.85	97.023	-4.81	-2.51	6.300	24.724
June	17.33	26.01	676.520	7.11	9.41	88.548	244.754
July	-17.51	-8.83	77.969	-9.87	-7.57	57.305	66.843
August	16.24	24.92	621.006	4.61	6.91	47.748	172.197
September	-14.76	-6.08	36.966	-8.76	-6.46	41.732	39.277
October	-36.97	-28.29	800.324	-9.16	-6.86	47.060	194.069
November	9.98	18.66	348.196	7.73	10.03	100.601	187.160
December	-4.34	4.34	18.836	-0.65	1.65	2.723	7.161
	$\begin{gathered} \Sigma y \\ =-78.12 \\ y=-8.68 \end{gathered}$		$\begin{aligned} & \Sigma(\mathrm{Y}-\overline{\mathrm{Y}})^{2} \\ & =3112.814 \end{aligned}$	$\begin{gathered} \sum x \\ =-20.67, \\ x=-2.3 \end{gathered}$		$\begin{aligned} & \Sigma(\mathrm{X}-\overline{\mathrm{X}})^{2} \\ & =412.902 \end{aligned}$	1031.607

The regression equation between the two can be determined as follows:
Covariance $=\frac{1031.607}{9}=114.62(\%)^{2}$
Variance of Market $\left(\sigma^{2} x\right)=\frac{412.902}{9}=45.88(\%)^{2}$
Variance of Stock $\left(\sigma^{2} y\right)=\frac{3112.814}{9}=345.87(\%)^{2}$
$\beta=\frac{\operatorname{Cov}(x, y)}{\sigma^{2} x}=\frac{114.62}{45.88}=2.5$
$\alpha=\bar{y}-b \times \bar{x}$
$=-8.68-b \times(-2.3)=-8.68-2.5(-2.3)=-2.3$
Characteristic line: $R_{i}=-2.93+2.5 \times R_{m}$
Where R_{i} is the return on Satyam Computers and R_{m} is the return on the market.
b. Proportion of systematic Risk $=\mathbf{r}^{\mathbf{2}}$
$r=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{114.62}{6.77 \times 18.6}=0.91$
$r^{2}=0.83$
Proportion of Unsystematic Risk
$=\left(1-r^{2}\right)$
$=1-0.83=0.17$

PROBLEM - 7

Consider the following prices of a stock during January 2000 and January 2001:

Trading Days	January 2000	January 2001
1	130	500
2	133	492
3	133	472
4	139	460
5	139	416
6	141	392
7	142	430
8	141	392
9	144	416

Based on the above prices, test for the weak form of market efficiency using autocorrelation test and comment on the result.

Solution :

Trading day	Change in prices						
	$\begin{gathered} \operatorname{Jan} 2000 \\ (\mathrm{x}) \end{gathered}$	$\begin{gathered} \text { Jan } 2001 \\ (y) \end{gathered}$	($\mathrm{X}-\overline{\mathrm{X}}$)	$(x-\bar{x})^{2}$	$(\mathrm{Y}-\overline{\mathrm{Y}})$	$(\mathrm{Y}-\overline{\mathrm{Y}})^{2}$	$\begin{aligned} & (\mathrm{X}-\overline{\mathrm{X}}) \\ & (\mathrm{Y}-\overline{\mathrm{Y}} \end{aligned}$
2	3	-8	1.25	1.563	2.5	6.25	3.125
3	0	-20	-1.75	3.063	-9.5	90.25	16.625
4	6	-12	4.25	18.063	-1.5	2.25	-6.375
5	0	-44	-1.75	3.063	-33.5	1122.25	58.625
6	2	-24	0.25	0.063	-13.5	182.25	-3.375
7	1	38	-0.75	0.563	48.5	2352.25	-36.375
8	-1	-38	-2.75	7.563	-27.5	756.25	75.625
9	3	24	1.25	1.563	34.5	1190.25	43.125
	$\begin{aligned} & \sum \mathrm{x}=14 \\ & \bar{x}=1.75 \end{aligned}$	$\begin{aligned} & \Sigma y=-84 \\ & \bar{y}=-10.5 \end{aligned}$		$\begin{aligned} & \Sigma(x-\bar{x})^{2} \\ & =35.504 \end{aligned}$		$\begin{gathered} \Sigma(\mathrm{Y}-\overline{\mathrm{Y}})^{2} \\ =5702 \end{gathered}$	151.00

Covariance $(x, y)=\frac{151}{8}=18.88(\%)^{2}$

$$
\begin{aligned}
& \sigma^{2} x=\frac{35.504}{8}=4.44(\%)^{2} \\
& \sigma^{2} y=\frac{5702}{8}=712.75(\%)^{2}
\end{aligned}
$$

Correlation $(x, y)=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}$

$$
=\frac{18.88}{2.11 \times 26.7}=0.34
$$

Hence, the correlation coefficient (r) between the above price changes is 0.34 . Therefore, we can say that the test does support the weak form efficiency.

PROBLEM - 8

Mr. A. Rathi is testing the weak form efficient market hypothesis on the Indian stock market. For this he has collected the data on a leading market index for the last 15 trading days. This is given below:

Trading day	Market Index
1	4500
2	4550
3	4400
4	4350
5	4300
6	4330
7	4400
8	4445
9	4440
10	4370
11	4380
12	4365
13	4500
14	4560
15	4600

You are required to perform a runs test and determine the independence of data at 10% level of significance.

Solution :

Trading Day	Market Index	Price Change
1	4500	
2	4550	+
3	4400	-
4	4350	-
5	4300	-
6	4330	+
7	4400	+
8	4445	+
9	4440	-
10	4370	-
11	4380	+
12	4365	-
13	4500	+
14	4560	+

$r=7$
$\mu_{\mathrm{r}}=\frac{2 \mathrm{n}_{1} \mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}+1=\frac{2 \times 8 \times 6}{14}+1=7.857$
$\sigma_{r}=\sqrt{\frac{(\mu-1)(\mu-2)}{n_{1}+n_{2}-1}}=\sqrt{\frac{(7.857-1)(7.857-2)}{13}}=\sqrt{\frac{6.857 \times 5.857}{13}}=1.76$
where,
$r=$ Total number of runs
$\mathrm{n}_{1}=$ No. of positive price changes
$\mathrm{n}_{2}=$ No. of negative price changes
At $\alpha=0.10, Z=1.65$
The lower limit: $\mu_{r}-\mathrm{Z} \sigma_{r}=7.857-(1.65 \times 1.758)$

$$
=7.857-2.901=4.956
$$

The upper limit : $\mu_{\mathrm{r}}+\mathrm{Z} \sigma_{\mathrm{r}}=7.857+(1.65 \times 1.758)$

$$
=7.857+2.901=10.758
$$

Since the observed number of runs of 7 falls within the lower and upper limits it seems to indicate that the prices are independent at 10\% level of significance.

PROBLEM - 9

The stock research division of M / s Kothari Investment services has developed ex-ante probability distribution for the likely economic scenarios over the next one year and estimates the corresponding one period rates of return on stocks A, B and market index as follows:

Economic Scenarios	Probability	One period rate of return \%		
		Stock A	Stock B	Market
Recession	0.15	-15	-3	-10
Low growth	0.25	10	7	13
Medium growth	0.45	25	15	18
High growth	0.15	40	25	32

The expected risk-free real rate of return and the premium for inflation are 3.0% and 6.5\% p.a. respectively.

As an analyst in a research division you are required to :
a. Calculate the following for stock A and B
i. Expected return
ii. Covariance of returns with the market returns
iii. Beta
b. Recommend for fresh investment in any of these two stocks. Show all the necessary calculations.

Solution :

a. i. Expected return on stock $=E\left(R_{A}\right)$

$$
\begin{aligned}
& \sum_{\mathrm{s}=1}^{\mathrm{n}} \mathrm{R}_{\mathrm{S}} \mathrm{P}_{\mathrm{S}} \\
& =0.15(-15)+0.25 \times 10+0.45 \times 25+0.15 \times 40=17.5 \% \\
\mathrm{E}\left(\mathrm{R}_{\mathrm{B}}\right)= & 0.15 \times(-3)+0.25 \times 7+0.45 \times 15+0.15 \times 25=11.8 \% \\
\mathrm{E}\left(\mathrm{R}_{\mathrm{M}}\right) & =0.15 \times(-10)+0.25 \times 13+0.45 \times 18+0.15 \times 32=14.65 \%
\end{aligned}
$$

ii. Covariances

$$
\begin{aligned}
\operatorname{COV}_{\mathrm{AM}}= & \sum_{\mathrm{s}=1}^{\mathrm{n}}\left[\mathrm{R}_{\mathrm{A}_{\mathrm{s}}}-\mathrm{E}\left(\mathrm{R}_{\mathrm{A}}\right)\right]\left[\mathrm{R}_{\mathrm{M}_{\mathrm{s}}}-\mathrm{E}\left(\mathrm{R}_{\mathrm{M}}\right)\right] \mathrm{P}_{\mathrm{S}} \\
= & 0.15[(-15)-17.5][(-10)-14.65]+0.25[10-17.5][13-14.65] \\
& +0.45[25-17.5][18-14.65]+0.15[40-17.5][32-14.65] \\
= & 193.13(\%)^{2} \\
= & 0.15[(-3)-11.8][(-10)-14.65]+0.25[7-11.8][13-14.65] \\
& +0.45[15-11.8][18-14.65]+0.15[25-11.8][32-14.65] \\
\operatorname{COV}_{\mathrm{BM}}= & 95.88(\%)^{2} \\
\operatorname{VAR}_{\mathrm{M}}\left(\sigma_{\mathrm{m}}^{2}\right)= & 0.15[(-10)-14.65]^{2}+0.25[13-14.65]^{2}+0.45[18-14.65]^{2} \\
& +0.15[32-14.65]^{2} \\
= & 142.03(\%)^{2}
\end{aligned}
$$

iii.

$$
\begin{aligned}
& \beta_{A}=\frac{\operatorname{COV}_{\mathrm{AM}}}{\sigma_{\mathrm{M}}^{2}}=\frac{193.13}{142.03}=1.36 \\
& \beta_{\mathrm{B}}=\frac{\operatorname{COV}_{\mathrm{BM}}}{\sigma_{\mathrm{M}}^{2}}=\frac{95.88}{142.03}=0.675 \approx 0.68
\end{aligned}
$$

b. For ex-ante SML R(r_{i}) $=r_{0}+r_{i} \beta_{i m}$

Where,
$r_{0}=$ Intercept of SML
$r_{i}=$ Slope of the SML
If the assumptions at the CAPM are correct, then
$R\left(r_{i}\right)=r_{f}+\left[E\left(r_{m}\right)-r_{f}\right] \beta_{i m}$
Where, $r_{f}=$ Risk free rate
$E\left(r_{m}\right)-r_{f}=$ Slope of SML
Given $r_{f}=3.0+6.5=9.5 \%$

Where, $\mathrm{r}_{\mathrm{f}}=$ Inflation adjusted nominal risk free rate .
i. $R\left(r_{A}\right)=9.5+1.36 \times[14.65-9.5]=16.50 \%$
$\alpha_{A}=E\left(R_{A}\right)-R\left(r_{A}\right)=17.50-16.50=1.0 \%$
Hence, A is under priced.
ii. $R\left(r_{B}\right)=9.5+0.675 \times[14.65-9.5]=12.98 \%$ $\alpha_{B}=E\left(R_{B}\right)-R\left(r_{B}\right)=11.80-12.98=-1.18 \%$ Hence, B is over priced.

Therefore, it is recommended to invest in Stock A.

PROBLEM - 10

Consider the following data for two companies and the market:

Company/Market	Beta	Standard Deviation (\%)	Covariance with Sensex (\% ${ }^{\mathbf{2}}$)
Zee Telefilms	N.A.	45	205
Padmalay Telefilms	1.2	40	N.A.
Sensex	1.0	15	225

Further it is gathered that risk free interest is 7%. Considering the assumptions of regression (Characteristic) line hold good you are required to find
a. i. Beta of Zee Telefilms
ii. Covariance of return on Padmalay Telefilms with that of return on sensex
b. The coefficients of correlation between
i. Return on Zee Telefilms and return on sensex
ii. Return on Padmalaya Telefilms and return on sensex
c. The variance of the portfolio formed using Zee Telefilms and Padmalaya Telefilms in the proportion of $2 / 3$ and $1 / 3$ respectively.
d. Whether the unsystematic risk of the portfolio is less than individual companies? (β of portfolio is weighted average betas of underlying stocks).

Solution :

a. i. $\quad \beta_{z e e}=\frac{\operatorname{Cov}(\text { Zee }, \mathrm{M})}{\operatorname{Var}(\mathrm{M})}=\frac{0.0205}{(0.0225)}=0.91$
ii. $\operatorname{Cov}(\operatorname{Pad}, \mathrm{M})=\beta_{\text {Pad }} \times \operatorname{Var}(\mathrm{M})=1.2 \times 0.0225$

$$
=\quad 0.027 \text { i.e., } 270\left(\%^{2}\right)
$$

b. i. $\quad \rho_{\text {zee }, \mathrm{M}}=\frac{\operatorname{Cov}(\mathrm{zee}, \mathrm{M})}{\sigma_{\text {zee }} \times \sigma_{\mathrm{M}}}=\frac{0.0205}{0.45 \times \sqrt{0.0225}}=0.304$
ii. $\quad \rho_{\text {Pad }, \mathrm{M}}=\frac{\operatorname{Cov}(\operatorname{Pad}, \mathrm{M})}{\sigma_{\text {Pad }} \times \sigma_{\mathrm{M}}}=\frac{0.027}{0.40 \times \sqrt{0.0225}}=0.45$
c. $\operatorname{Var}($ Portfolio $)=\mathrm{W}_{\text {zee }}^{2} \sigma_{\text {zee }}^{2}+\mathrm{W}_{\text {Pad }}^{2} \sigma_{\text {Pad }}^{2}+2 \mathrm{~W}_{\text {zee }}, \mathrm{W}_{\text {Pad }} \operatorname{Cov}($ Zee, Pad $)$
$\mathrm{W}_{\mathrm{zec}}=\frac{2}{3} ; \sigma_{\mathrm{zee}}=0.45$
$\mathrm{W}_{\text {Pad }}=\frac{1}{3} ; \quad \sigma_{\text {Pad }}=0.40$
From the assumptions of characteristic (Regression) line we get

$$
\begin{aligned}
\operatorname{Cov}(\mathrm{zee}, \mathrm{Pad}) & =\beta_{\mathrm{zec}} \times \beta_{\mathrm{Pad}} \times \operatorname{Var}(\mathrm{M}) \\
& =0.91 \times 1.2 \times 0.0225=0.025 \text { i.e. } 250\left(\%^{2}\right)
\end{aligned}
$$

$$
\text { Variance (Portfolio) }=\left(\frac{2}{3}\right)^{2} \times(0.45)^{2}+\left(\frac{1}{3}\right)^{2} \times(0.40)^{2}+2 \times \frac{2}{3} \times \frac{1}{3} \times 0.025
$$

$$
=\quad 0.119 \text { i.e., } 1190\left(\%^{2}\right)
$$

d. Unsystematic Risk of Zee Telefilms $=\left(1-\rho_{\text {zee }, \mathrm{M}}^{2}\right) \sigma_{\text {Zee }}^{2}$

$$
\begin{array}{ll}
= & {\left[1-(0.304)^{2}\right] \times(0.45)^{2}} \\
= & 0.184 \text { i.e., } 1840\left(\%^{2}\right)
\end{array}
$$

$$
\begin{aligned}
\text { Unsystematic Risk of Padmalay Telefilms } & = & \left(1-\rho_{\text {Pad, } \mathrm{M}}^{2}\right) \sigma_{\text {Pad }}^{2} \\
& = & {\left[1-(0.45)^{2}\right] \times(0.40)^{2} } \\
& = & 0.128 \text { i.e., } 1280\left(\%^{2}\right)
\end{aligned}
$$

$$
\beta_{\text {Porfolio }}=\frac{2}{3} \beta_{\mathrm{zec}}+\frac{1}{3} \beta_{\mathrm{Pad}}=\frac{2}{3} \times 0.91+\frac{1}{3} \times 1.2=1.007
$$

$$
\begin{aligned}
\rho_{\text {Port }, \mathrm{M}}=\frac{\operatorname{Cov}(\text { Port, } \mathrm{M})}{\sigma_{\text {Port }} \times \sigma_{\mathrm{M}}} & =\beta_{\text {Port }} \times \frac{\sigma_{\mathrm{M}}}{\sigma_{\text {Port }}} \\
& =1.007 \times \sqrt{\frac{0.0225}{0.119}} \\
& =0.438 \\
\text { Unsystematic risk of portfolio } & =\left(1-\rho_{\text {Port, } \mathrm{M}}^{2}\right) \sigma_{\text {Port }}^{2} \\
& =\left[1-(0.438)^{2}\right] \times 0.119 \\
& =0.096 \text { i.e., } 960\left(\%^{2}\right)
\end{aligned}
$$

Therefore, we find that the unsystematic risk of the portfolio is less than that of individual stocks. From the result it can be implied that because of constitution of portfolio unsystematic return reduces.

