CA FINAL
 STRATEGIC FINANCIAL MANAGEMENT FOREX
 TEST 5

SOLUTIONS

Question 1:

$$
¥ 500 \text { payable (3m) }
$$

Conclusion : Since, the outflow under Money Market Cover is lower than Forward Cover, it is preferable.
\$ $10 \mathrm{~m}(3 \mathrm{~m})$ receivable

Conclusion : Since, the inflow under Forward Cover is higher, than Money Market Cover, it is Preferable.

Question 2:

$\$ 1,00,000$ payable (3m) from now

Conclusion : The outflow under Forward Cover is lower than that of under Money Market Cover, hence it should be preferred.
$€ 2,00,000$ receivable (3 m) from today

$2,00,000 \times 58.96$
Inflow $=₹ 1,11,792,000$

$$
\begin{array}{ccc}
\frac{\mathbf{B}}{\frac{2,00,000}{\left(1+\frac{0.032}{4}\right)} \times} \times & \left.\begin{array}{c}
\text { S } \\
\left(1+\frac{0.07}{4}\right)
\end{array}\right) \\
\text { Inflow }=₹ 1,18,80,927.58
\end{array}
$$

Conclusion : The inflow under Money Market Cover is more than the inflow under Forward cover, so it should be preferred.

Question 3:

Alt 1 : Investment in India(₹1m)

Step 1 : \quad Sell £ spot at ₹ $69.5 / £$ and therefore ₹ amount $=₹ 69.5 \mathrm{~m}$
Step 2: Invest ₹ 69.5 m in India at a post tax return of $(15 \times 0.85) \%$ i.e. 12.75%
Step 3: Expected Rupee inflow after 1 year:
$=69.5 \times 1.1275=₹ 78.36 \mathrm{~m}$
Step 4 : Expected Spot for buying $£$ as per PPP

$$
=\left(69.7 \times \frac{1.04}{1.02}\right)=₹ 71.067 / £
$$

Step 5: Expected $£$ inflow after 1 year $=\frac{78.36}{71.067}=£ 1.1026 \mathrm{~m}$
Step 6 : \quad Expected Return $=\left(\frac{1.1026-1}{1}\right) \times 100=10.26 \%$

Alternative 2 : Investment in Hong Kong (£ 1 m)

Step 1: Sell £ spot at HK\$ 11.15/£ and therefore HK\$ = 11.15
Step 2 : Invest 11.15 m in Hong Kong at a post tax return of (12×0.88) i.e. 10.56%
Step 3 : Expected Rupee inflow in 1 year
$=11.15 \times 1.1056=12.3274 \mathrm{HKD}$
Step 4 : Expected Sport after buying £ as per PPP

$$
=\left(11.18 \times \frac{1.03}{1.02}\right)=\text { HKD11.289 } / £
$$

Step 5 : \quad Expected $£$ inflow after 1 year $=\frac{12.3274}{11.289}=£ 1.0919$
Step 6 : \quad Expected Return $=\left(\frac{1.0919-1}{1}\right) \times 100=9.19 \%$

Question 4 :

Step 1: Expected Return on Indian security in ₹ terms as per CAPM
$=R f+(R m-R f)$

$$
=8+(15-8) 1.2=16.4 \%
$$

Step 2: Rupee is expected to depreciate by 4%
Step 3 : \quad Expected Return in $\$$ term $=(1.164 \times 0.96)-1=11.744 \%$
Note: SD is irrelevant as risk is not asked for

Question 5 :

Step 1 : Sell $10 \mathrm{~m} \$$ spot @ ₹ $48 / \$$, getting ₹ 480 m
Step 2: Invest ₹ 480 m in India at a return of

$$
\text { (i) } 6+(12-6) \times 1.4=14.4 \%
$$

Step 3: Expected Rupee inflow after 1 year

$$
=480 \times 1.144=₹ 549.12 \mathrm{~m}
$$

Step 4 : \quad Expected Spot for buying $\$=₹ 48 \times 1.04 / \$=₹ 49.92 / \$$
Step 5: Expected $\$$ inflow after 1 year $=\frac{549.12}{49.92}=\$ 11 \mathrm{~m}$
Step 6: Expected Return $=\left(\frac{11-10}{10}\right) \times 100=10 \%$
(ii) $\operatorname{Risk}\left(\sigma_{\mathrm{p}}\right)=\sqrt{\operatorname{Var}(\text { Stock })+\operatorname{Var}(\text { Currency })+2 \times \mathrm{r} \times \text { SD stock } \times \text { SD currency }}$

$$
=\sqrt{(10)^{2}+(8)^{2}+2 \times 0.15 \times 8 \times 10}=13.71 \%
$$

Question 6 :

Step 1 : Sell \$ 5m spot @ ₹ 43.5/\$, getting ₹ 217.5 m
Step 2 : Invest ₹ 217.5 m in India, at a return of $5+(16-5) \times 1.25=18.75 \%$

Step 3 : Expected ₹ inflow after 1 year $=217.5 \times 1.1875=₹ 258.28 \mathrm{~m}$

Step 4 : Expected Spot for buying $\$=43.5 \times 0.98$ or $43.5 \times \frac{1}{1.02}=₹ 42.63 / \$$

Note : Since quotation is INR/USD and it is said that INR will appreciate, the mathematically correct process is to divide by 1.02. However, in all past solutions throughout FOREX, ICAI has always reverted it on the base currency, that is if INR appreciates 2%, USD depreciates 2% and therefore they multiply it by 0.98. Hence, students are advised to do multiplication with 0.98....although conceptually wrong, examination wise correct.......Hope you are not surprised!!!

Step 5: Expected $\$$ inflow after 1 year $=\frac{258.28}{42.63}=\$ 6.058 \mathrm{~m}$

Step 6 :

(i) Expected Return $\left(\frac{6.058-5}{5}\right) \times 100=21.6 \%$
(ii) $\operatorname{Risk}\left(\sigma_{p}\right)=\sqrt{\operatorname{Var}(\text { Stock })+\operatorname{Var}(\text { Currency })+2 \times \text { SD stock } \times \Pi \times \text { SD currency }}$

$$
=\sqrt{9^{2}+6^{2}+2 \times 0.66 \times 9 \times 6}=\sqrt{188.28}=13.72 \%
$$

Question 7:

Dear Students, in this problem, we are not given absolute information like "What was the initial exchange rate, i.e. S0 and also, what amount of Australian Dollar (not INR) that the investor started with. Hence, we will solve the sum via the shortcut, i.e. Factor Technique.

Step 1: \quad Return in terms of $\operatorname{INR}=6.5+(12-6.5) \times 1.65=15.575 \%$
Step 2: Expected Appreciation on Australian Dollar = 3\%
Step 3 : \quad Expected Expected Return in terms of AUD = (1.15575/1.03) - $1=12.208 \%$
Note: Which is the foreign currency? - It's INR.
However, we are given appreciation of AUD.
Hence, we have done [(factor/factor) - 1]
If, instead, INR depreciation of 3% was given, we would have done [(factor*factor) - 1]

That is, Expected Return would have been (1.15575×0.97) - $1=12.107 \%$

Step 4 : $\quad \operatorname{Risk}\left(\sigma_{p}\right)=\sqrt{\operatorname{Var}(\text { Stock })+\operatorname{Var}(\text { Currency })+2 \times \text { SD stock } \times \Pi \times \text { SD currency }}$ Risk $=\sqrt{10+25+0}=5.916 \%$

Question 8 :

a. Step 1 : Sell $\$ 5,000,000$ spot @ ₹ $46.5 / \$$, getting ₹ $23,25,00,000$

Step 2 : Invest ₹ $28,25,00,000$ is SENSEX carving a Return of

$$
\left(\frac{6087-5855}{5855}\right) \times 100=3.96 \%
$$

Step 3 : Rupee inflow $=23,25,00,000 \times 1.0396=₹ 24,17,07,000$
Step 4: \$ inflow $=\frac{24,17,07,000}{43.55}=\$ 55,50,103$
Nominal Return to the US investor $=\left(\frac{55,50,103-50,00,000}{50,00,000}\right) \times 100=11.002 \%$
b. Real Return to the US investor
$[(1+$ Nominal Return $) /(1+$ Inflation $)-1]=\left(\frac{1.11002}{1.02}-1\right) \times 100=8.226 \%$
c. Had an Indian Investor put in the same \$ equivalent Rupee amount, his Nominal Return would have been $=3.96 \%$
d. Real Return to the Indian investor (Fishers' Equation) $=\left(\frac{1.0396}{1.06}-1\right) \times 100=-1.92 \%$ Question 9 :

Net Return to the Investor $=[(0.8 \times 0.9834)-1] \times 100=-21.33 \%$

Question 10 :

Alt 1 : $\$$ borrowing

a. Step 1 : Borrowing amount $\frac{10}{46.90}=\$ 0.213 \mathrm{~m}$ (Since, we'll borrow $\$$ and sell it spot to get ₹ 10 m)

Step 2 : \$ payable after 6 months $=0.213 \times\left(1+\frac{0.04}{2}\right)=\$ 0.217 \mathrm{~m}$
Step 3 : Purchase 6 m forward contract at $46.95+0.9=₹ 47.85 / \$$
Step 4 : Outflow after 6 months $=47.85 \times 0.217=₹ 10.38 \mathrm{~m}$

Alt 2: £ borrowing

Step 1 : Borrowing amount $=\frac{10}{65.35}=£ 0.153 \mathrm{~m}$
Step 2 : $£$ payable after 6 months $=0.153\left(1+\frac{0.05}{2}\right)=£ 0.157 \mathrm{~m}$
Step 3 : Purchase 6 m £ forward contract at $65.4+1=₹ 66.4 / £$
Step 4 : Outflow after 6 months $=66.4 \times 0.157=₹ 10.424 \mathrm{~m}$
Conclusion : Hence, as outflow under $\$$ financing < outflow under $£$ financing, the $\$$ financing should be preferred.

Alt 1: \$ Borrowing

b. Step 1 : Borrowing amount $=\frac{10}{46.90}=\$ 0.213 \mathrm{~m}$

Step 2 : $\$$ Payable after 6 months $=0.213 \times\left(1+\frac{0.04}{2}\right)=\$ 0.217 \mathrm{~m}$
Step 3 : Expected spot Rate after 6 months = ₹ $47.55 / \$$
Step 4 : Outflow after 6 months $=₹(0.217 \times 47.55) \mathrm{m}=₹ 10.318 \mathrm{~m}$
Alt 3 : £ Borrowing
Step 1 : Borrowing amount $=\frac{10}{65.35}=£ 0.153 \mathrm{~m}$

Step 2 : $£$ Payable after 6 month $=0.153\left(1+\frac{0.05}{2}\right)=£ 0.157 \mathrm{~m}$
Step 3 : Expected Spot Rate after 6 months $=$ ₹ $66.95 / £$
Step 4 : Outflow after 6 months $=₹(0.157 \times 66.95)=₹ 10.511 \mathrm{~m}$
Conclusion : Hence, as outflow under \$ financing < outflow under £ financing, it should be preferred.

Question 11:

a. If the company borrow in $\$$

Step 1 : Borrow $\$$ worth $₹ 50 \mathrm{~m}$ at $₹ 48.50$, getting $=\frac{50}{48.5}=\$ 1.03928 \mathrm{~m}$
Step 2 : $\$$ payable after 3 months $=1.03 \times\left(1+\frac{0.04}{4}\right)=\$ 1.041237 \mathrm{~m}$

Step 3 :

i. Cover via forward contract @ ₹ $49.05 / \$$

Outflow after 6 months $=1.041237 \times 49.05=₹ 51.073 \mathrm{~m}$
Effective annualized cost of borrowing $=\left(\frac{51.073-50}{50}\right) \times 100 \times 4=8.58 \%$

OR

ii. Keep the position open and expected spot rate $=₹ 48.95 / \$$

Outflow after 6 months $1.041237 \times 48.95=₹ 50.97 \mathrm{~m}$
Effective annualized cost of borrowing $=\left(\frac{50.97-50}{50}\right) \times 100 \times 4=7.75 \%$

b. If the company borrow in $£$

Step 1 : Borrow $£$ worth $₹ 50 \mathrm{~m}$ at $₹ 74.05$ getting $=\frac{50}{74.05}=£ 0.675 \mathrm{~m}$
Step 2 : Pound payable after 6 months $=0.675 \times\left(1+\frac{0.06}{4}\right)=£ 0.6853 \mathrm{~m}$
Step 3 :
i. Cover in forward contract @ $74.10+0.9=₹ 75.00 / £$

Outflow of tax 6 months $=0.6853 \times 75=₹ 51.4 \mathrm{~m}$
Effective annualized cost of borrowing $=\left(\frac{51.4-50}{50}\right) \times 100 \times 4=11.21 \%$

OR

ii. Keep the position open and accepted spot rate $=₹ 74.80 / £$

Outflow after 6 months $=74.80 \times 0.6853=₹ 51.26 \mathrm{~m}$
Effective annualized cost of borrowing $=\left(\frac{51.26-50}{50}\right) \times 100 \times 4=10.08 \%$
Conclusion - $\$$ borrowing with no cover is expected to be the best

Question 12:

There is a mistake in the question. Exchange rates are reversed, as in - Exchange rate on the date of availing the loan (01.01.2003) : Euro 0.78/\$

Exchange rate on the date of repaying the loan (31.12.2003) : Euro 0.90/\$
Step 1 : Interest Rate $=8 \%$ for borrowing $\$$
Step 2: Depreciation of $\$$ of $\$=\left(\frac{0.9-0.78}{0.78}\right) \times 100=15.38 \%$
Step 3 : Nominal cost of $\$$ borrowing in Euro terms $=[(1.08 \times 1.1538)-1] \times 100=24.61 \%$
Step 4 : Real Cost of $\$$ borrowing in Euro terms $=[(1.2461 / 1.03)-1] \times 100=20.98 \%$

Question 13

Indian company requires a loan of $\$ 3,00,000$, to be repaid in 3 equal annual installments of $\$ 1,12,000$. The current exchange rate $=47.70 .\left(\mathrm{S}_{0}\right)$

Hence, $₹$ inflow today $=3,00,000 \times 47.7=₹ 1,43,10,000$
Exchange rate after 1 year $\left(\mathrm{S}_{1}\right)=47.7 \times 0.99=₹ 47.223 / \$$
Exchange rate after 2 year $\left(\mathrm{S}_{2}\right)=47.223 \times 1.02=₹ 48.167 / \$$
Exchange rate after 3 year $\left(S_{3}\right)=48.167 \times 1.03=₹ 49.612 / \$$
Hence, effective cost of funds in ₹ terms :

$$
1,43,10,000=\frac{1,12,000 \times 47.223}{1+\mathrm{r}}+\frac{1,12,000 \times 48.167}{(1+\mathrm{r})^{2}}+\frac{1,12,000 \times 49.612}{(1+\mathrm{r})^{3}}
$$

Using interpolation, we will get r close to 6.5%

Question 14 :

Initial Agreement on forward contract:

Initial Agreement on forward contract:
To deliver £ 1,00,000 at ₹ $65.6 / £$ on $31^{\text {st }}$ May.
However, on $31^{\text {st }}$ May, that is maturity date, firm approaches for extension, i.e. cancellation of old contract, together with fresh forward contract.

To cancel old contract, firm needs to buy pound spot at 66.65
Extension charges $=100000 \times(66.65-65.6)$

$$
\begin{aligned}
& =66,65,000-65,60,000 \\
& =₹ 1,05,000 .
\end{aligned}
$$

Also, firm will enter into a fresh 2 m forward contract to sell pound at 67.01

Question 15:

Importer has a payable of $\mathrm{C} \$ 5,00,000$ on 31.03 .02
On 01.01.02, importer buys forward at ₹ 30.34/C\$
On 31.03.02, the importer :
Square off his old contract at $=5,00,000 \times 30.54 \quad=$ ₹ $1,52,70,000$
His profit on cancellation $\quad=5,00,000 \times(30.54-30.34)=1,00,000$
Also, firm will enter into a fresh 1 m forward contract to buy pound at 30.68
Net Inflow = -₹ 1,00,000

Question 16 :

i. Profit based on current exchange rate

Revenue - Import Cost - FC - VC
$=(2400 \times 500 \times 51.50)-(2400 \times 800 \times 27.25)-2400(1,000+1,500)$
$=6,18,00,000-5,23,20,000-60,00,000$
$=₹ 34,80,000$

Project based on exchange rate after 6 month

Revenue - Import Cost - FC -VC
$=(2400 \times 500 /$ unit $\times 52.00)-(2400 \times 800 /$ unit $\times 27.75)-2400(1000+1500)$
$=6,24,00,000-5,32,80,000-60,00,000$
= ₹ $31,20,000$
\therefore Loss due to transaction exposure

$$
\begin{aligned}
& =34,80,000-31,20,000 \\
& =₹ 3,60,000
\end{aligned}
$$

ii. Step 1 :

Since the firm is now invoicing exports at ₹ 25,000 , there is no transaction exposure relating to $€$ receivable.

Ofcourse, we still have $\mathrm{S} \$$ payable. Using the revised current rate and the rate after 6 months, loss due to transaction exposure $=2,400 \times 800 \times(27.75-27.15)=$ ₹ $11,52,000$

* Why 2,400?units toh change hone wala hai

Answer : Change in units Economic exposure $€$ and that's why Transaction exposure calculate karte time units change nahi karenge, 2,400 he rakhenge

Step 2 :

$\mathrm{S}_{0} \quad=₹ / € 51.50$
(Old Current Rate)

$$
\mathrm{S}_{\mathrm{T}}=₹ / €=52
$$

(New Current Rate)

$€$ Equivalent price based on old current rate $=\frac{25,000}{51.50}=€ 485.44$
$€$ Equivalent price based on revised current rate $=\frac{25,000}{51.75}=483.09$
\therefore Fall in price $=\frac{485.44-483.09}{485.44} \times 100=0.48 \%$
Given, elasticity, ed $=1.5 \%$
So, increase in demand $=1.5 \% \times 0.48 \%=0.72 \%$
\therefore New Demand $=2400$ units $+0.72 \%$ of $2,400=2417$ units

Self Note : Dono current exchange rate kuy use kiye, 6 months baad wala bhi toh use kar sakte the?

Answer: No, because if we use rate after $6 m$ i.e. ₹52/Euro, the change in demand will occur after 6 m which will affect future project and not current 6 m profit

Step 3 :

Project based on old units, ₹ invoicing and revised current rate
$=(2400 \times 25,000)-(2400 \times 800 \times 27.15)-(2400 \times 2,500)=₹ 18,72,000$

Project based on new units, ₹ invoicing and exchange rate after $\mathbf{6 m}$
$=(2417 \times 25,000)-(2417 \times 800 \times 27.75)-\left(2417 \times 1,500^{*}\right)-\left(2400^{\#} \times 1,000\right)$
= ₹ 7,42,100
(*=VC, \#=units will not be changed for fixed cost)
\therefore Loss due to economic exposure $=18,72,000-7,42,100=₹ 11,29,900$

Self Note : Dono Profitke Components pe dhyan de :

- 2,400 \rightarrow 2,417 units \rightarrow Change due to Economic exposure
- $S \$$ Rate $27.15 \rightarrow 27.75 \rightarrow$ Change due to Transaction exposure

Therefore, Actually, 11,29,900(loss) is combined loss due to transaction as well as economic exposure But, loss due to transaction exposure $=11,52,000$ (Calculated in step 1)
\therefore Gain due to Economic exposure $=11,52,000-11,29,900=₹ 22,100$
[But do the sum in the manner solved by ICAI, the note is just for your understanding if you find ambiguity solving the question next time.]

Question 17:

i. Profit based on current exchange rate

```
Revenue - Import Cost - FC - VC
\(=(6000 \times 165 \times 59.60)-(6000 \times 750 \times 5.98)-6000(1,200+2,500)\)
\(=\) ₹ \(98,94,000\)
```


Project based on exchange rate after 6 month

Revenue - Import Cost - FC -VC
$=(6000 \times 165 \times 60.30)-(6000 \times 750 \times 6.25)-6000(1,200+2,500)$
$=93,72,000$
\therefore Loss due to transaction exposure $=98,94,000-93,72,000=₹ 5,22,000$

ii. Step 1 :

Since the firm is now invoicing exports at $₹ 9,500$, there is no transaction exposure relating to $€$ receivable.

Of course, we still have HK\$ payable. Using the revised current rate and the rate after 6 months, loss due to transaction exposure $=6,000 \times 750 \times(6.25-6.02)=$ ₹ $10,35,000$

* Why 6,000?units toh change hone wala hai

Answer : Change in units Economic exposure $€$ and that's why Transaction exposure calculate karte time units change nahi karenge, 6,000 he rakhenge

Step 2 :

$\mathrm{S}_{0} \quad=₹ / € 59.60$
(Old Current Rate)

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{T}}=₹ / € \\
& =60.3
\end{aligned}
$$

(New Current Rate)

$€$ Equivalent price based on old current rate $=\frac{9,500}{59.60}=€ 159.40$
$€$ Equivalent price based on revised current rate $=\frac{9,500}{59.85}=158.73$
\therefore Fall in price $=\frac{159.4-158.73}{159.4} \times 100=0.42 \%$
Given, elasticity, ed $=2.5 \%$
So, increase in demand $=2.5 \% \times 0.42 \%=1.05 \%$
\therefore New Demand $=6000$ units $+1.05 \%$ of $6,000=6063$ units (approx)

Self Note : Dono current exchange rate kuy use kiye, 6 months baad wala bhi toh use kar sakte the?

Answer : No, because if we use rate after $6 m$ i.e. ₹ $60.3 /$ Euro, the change in demand will occur after 6 m which will affect future project and not current 6 m profit

Step 3 :

Project based on old units, ₹ invoicing and revised current rate
$=(6000 \times 9,500)-(6000 \times 750 \times 6.02)-6000(1,200+2,500)=77,10,000$

Project based on new units, ₹ invoicing and exchange rate after $\mathbf{6 m}$
$=(6063 \times 9,500)-(6063 \times 750 \times 6.25)-6063 \times 2500-6000 \times 1200$
= ₹ $68,20,687.5$
\therefore Loss due to economic exposure $=77,10,000-68,20,687.5=₹ 8,89,312.5$

Question 18:

\$ 2,50,000 payable in 3 months

(i) Alt 1 : Forward cover

Rupee Outflow after 3 months

$$
\begin{aligned}
& =₹ 2,50,000 \times 47.9 \\
& =₹ 1,19,75,000
\end{aligned}
$$

$$
\begin{aligned}
\text { Outflow } & =\frac{2,50,000}{\left(1+\frac{0.06}{4}\right)} \times \quad 47.30 \times\left(1+\frac{0.11}{4}\right) \\
& =₹ 1,19,70,628
\end{aligned}
$$

(iii) Alt 3 : Leading the payable :

Step 1 : Amount payable today $=2,50,000-5,000=\$ 2,45,000$
Step 2 : Buy $\$ 2,45,000$ spot at ₹ $47.3 / \$$, requiring $=2,45,000 \times 47.3$

$$
\text { = ₹ } 1,15,88,500
$$

Step 3 : Borrow ₹ $1,15,88,500$ at 9% p.a. for 3 months Amount payable $=1,15,88,500 \times\left(1+\frac{0.09}{4}\right)=₹ 1,18,49,241$
Conclusion : Hence, as outflow under Alt 3 is lowest, it should be preferred.

Question 19:
For the export ₹ 10 m receivable from an European
Alt 1 : invoice in \$
Step 1 : Invoice Amount $=\frac{10}{47.1}=\$ 0.2123 \mathrm{~m}$
Step 2 : 3m forward for sale of $\$=47.1\left(1+\frac{0.06}{4}\right)=₹ 47.81 / \$$
Step 3 : ₹ inflow after 3 months $=₹ 0.2123 \times 47.81=₹ 10.15 \mathrm{~m}$

Alt 2 : Invoice in £

Step 1 : Invoice Amount $=\frac{10}{68.65}=£ 0.1456 \mathrm{~m}$
Step 2 : 3m forward for sale of $£=68.65\left(1+\frac{0.04}{4}\right)=₹ 69.34 / £$
Step 3 : ₹ inflow after 3 months $=69.34 \times 0.1456=₹ 10.09 \mathrm{~m}$

Alt 3 : Invoice in $€$

Step 1 : Invoice Amount $=\frac{10}{43.15}=€ 0.2317 \mathrm{~m}$
Step 2 : 3m forward for sale of $€=43.15 \times\left(1+\frac{0.05}{4}\right)=₹ 43.69 / €$
Step 3 : ₹ inflow after 3 months $=0.2317 \times 43.69=€ 10.12 \mathrm{~m}$
Hence, invoicing the Receivables from exports is preferable in $\$$ terms as it results in the highest inflow of Rupee

For the impact ₹ 5 m payable to a UK firm

Alt 1 : Invoice in \$

Step 1 : Invoice Amount $=\frac{5}{47.20}=\$ 0.1059 \mathrm{~m}$
Step 2 : 3 m forward for purchase of $\$=47.2 \times\left(1+\frac{0.06}{2}\right)=₹ 48.61 / \$$
Step 3 : ₹ outflow in $6 \mathrm{~m}=0.1059 \times 48.61=₹ 5.147 \mathrm{~m}$

Alt 2 : Invoice in £

Step 1 : Invoice Amount $=\frac{5}{68.75}=£ 0.0727 \mathrm{~m}$
Step 2 : 3 m forward for purchase of $£=68.75 \times\left(1+\frac{0.04}{2}\right)=₹ 70.125 / £$
Step 3 : ₹ outflow in $6 \mathrm{~m}=0.0727 \times 70.125=£ 5.098 \mathrm{~m}$

Alt 3 : Invoice in $€$

Step 1 : Invoice Amount $=\frac{5}{43.20}=€ 0.1157 \mathrm{~m}$
Step 2: 3m forward for purchase of $€=43.20 \times\left(1+\frac{0.05}{2}\right)=44.28$
Step 3 : ₹ outflow in $6 \mathrm{~m}=44.28 \times 0.1157=₹ 5.1232 \mathrm{~m}$
Hence, as the outflow under $£$ invoicing is the lowest the same should be preferred.

Question 20:

For the export ₹ 10 m receivable to USA :

Alt 1 : Invoice in \$

Step 1 : Invoice Amount $=\frac{10}{48.20}=\$ 0.2074 \mathrm{~m}$
Step 2:3m forward for sale of $\$=48.20 \times\left(1+\frac{0.04}{4}\right)=₹ 49.164 / \$$

Step 3 : Inflow after $3 \mathrm{~m}=49.164 \times 0.2074=₹ 10.1967 \mathrm{~m}$

Alt 2 : Invoice in \mathfrak{f}

Step 1 : Invoice Amount $=\frac{10}{75.25}=£ 0.1328 \mathrm{~m}$
Step 2:3m forward for sale of $£=75.25 \times\left(1+\frac{0.03}{4}\right)=₹ 75.81 / £$
Step 3 : Inflow after 3 months $=75.81 \times 0.1328=₹ 10.06 \mathrm{~m}$

Alt 3 : Invoice in $€$

Step 1 : Invoice Amount $=\frac{10}{48}=€ 0.2083 \mathrm{~m}$
Step 2: 3m forward for sale of $€=48 \times\left(1+\frac{0.02}{4}\right)=₹ 48.24 / €$
Step 3 : Inflow of ₹ after 3 months $=48.24 \times 0.2083=₹ 10.048 \mathrm{~m}$
Hence, as inflow under invoicing exports in $\$$ is highest, the same should be preferred.
For import, ₹ 4 m payable 6 m from now
Alt 1: Invoice in \$
Step 1 : Invoice Amount $=\frac{4}{48.22}=\$ 0.0829 \mathrm{~m}$
Step 2: 6m forward for purchase of $\$=48.22 \times\left(1+\frac{0.04}{2}\right)=₹ 49.1844 / \$$
Step 3 : Outflow of ₹ after 6 months $=49.1844 \times 0.0829=₹ 4.077 \mathrm{~m}$

Alt 2 : Invoice in £

Step 1 : Invoice Amount $=\frac{4}{75.27}=£ 0.0531 \mathrm{~m}$
Step 2: 6 m forward for purchase of $£=75.27 \times\left(1+\frac{0.03}{2}\right)=₹ 76.399 / £$
Step 3 : ₹ outflow after 6 months $=76.399 \times 0.0531=₹ 4.056 \mathrm{~m}$

Alt 3 : Invoice in $€$

Step 1 : Invoice Amount $=\frac{4}{48.02}=€ 0.0833 \mathrm{~m}$
Step 2 : 6 m forward purchase of $€=48.02 \times\left(1+\frac{0.02}{2}\right)=₹ 48.5 / €$
Step 3: Outflow after 6 months $=48.5 \times 0.0833 \mathrm{~m}=₹ 4.04 \mathrm{~m}$
Hence, as outflow under Euro is lowest, the invoice should be done in the same.

