## Risk Management



## Risk Analysis in Capital Budgeting

## Why risk analysis?

Risk Analysis in Capital Budgeting : Standard Capital Budgeting we forecast the expected cash flows of the project then we use cost of capital as the discount rate to calculate NPV of the project.

If NPV is positive project is accepted.
If NPV is negative project is rejected.
However, discounting expected cash flows at cost of capital presumes that the new project has the same risk as the existing risk of the firm. This means that a Cement firm is doing Cement project and IT firm is doing an IT project etc. However, If a cement firm is doing IT project then the risk complaction of the new project not equal to the risk of the firm so we cannot use cost of capital as discount rate we have to carry out risk analysis.

A positive NPV Training Center


## a. Probability i.e., Expected Value

Expected Value i.e., mean $=\sum P_{x}$
$E(x)$ or $\bar{x}=\sum P x$

## Example

A Project cash flows are uncertain

| Year 1 |  | Year 2 |  |
| :---: | :---: | :---: | :---: |
| CF | Probability | CF | Probability |
| 400 | 0.2 | 600 | 0.4 |
| 700 | 0.5 | 900 | 0.3 |
| 800 | 0.3 | 1000 | 0.3 |

Calculate Expected CF for each year.
Answer :

| Year 1 |  |  |
| :---: | :---: | :---: |
| CF(x) | Probability (P) | Px |
| 400 | 0.2 | 80 |


| 700 | 0.5 | 350 |
| :---: | :---: | :---: |
| 800 | 0.3 | 240 |
|  | $\overline{\mathrm{CF}_{1}}$ | 670 |
| $\mathbf{C F}(\mathbf{x})$ | Year 2 |  |
| 600 | Probability (P) | Px |
| 900 | 0.4 | 240 |
| 1000 | 0.3 | 270 |
|  | $\overline{\mathrm{CF}_{2}}$ | 300 |
|  |  | 810 |

## Example

Suppose in the previous sum
Initial Investment = 900
Discount rate = 15\%
Calculated Expected NPV

| Years | Exp. CF | Df @ 15\% | PV |
| :---: | :---: | :---: | :---: |
| 0 | $(900)$ | 1 | $(900)$ |
| 1 | 670 | 0.8696 | 583 |
| 2 | 810 | 0.7561 | 612 |
| Expected NPV |  |  |  |

Example
The following table provides NPV distribution of a project.

| NPV | Probability |
| :---: | :---: |
| -600 | 0.2 |
| 700 | 0.1 |
| 1000 | 0.4 |
| 1500 | 0.3 |

Calculate expected NPV
Answer :

| NPV(X) | Probability(P) | PX |
| :---: | :---: | :---: |
| -600 | 0.2 | -120 |
| 700 | 0.1 | 70 |
| 1000 | 0.4 | 400 |
| 1500 | 0.3 | 450 |
| Expected NPV |  | 800 |

## b. Variance or Standard Deviation

$\operatorname{Variance}\left(\sigma_{\mathrm{n}}^{2}\right)=$ Expected value of squared deviation
$\sum \mathrm{P}(\mathrm{x}-\overline{\mathrm{x}})^{2}$ (Difficult to interpret)
Standard Deviation $\left(\sigma_{\mathrm{x}}\right)=\sqrt{\text { Variance }}=\sqrt{\sum \mathrm{P}(\mathrm{X}-\overline{\mathrm{X}})^{2}}$

| Example |  |
| :---: | :---: |
| Following table provides NPV distribution of a project |  |
| $\qquad$ NPV | Probability |
| -200 | 0.2 |
| 100 | 0.5 |
| 300 | 0.3 |

Calculate expected NPV $\sum$ its SD

## Answer :

| NPV (X) Probability(P) | PX | P(X $\overline{\mathbf{X}})$ |  |
| :---: | :---: | :---: | :---: |
| -200 | 0.2 | -40 | 18,000 |
| 100 | 0.5 | 50 | 0 |
| 300 | 0.3 | 90 | 12,000 |
| Expected NPV $(\overline{\mathrm{X}})$ |  |  | 30,000 |

$\sigma_{x}^{2}=\sum \mathrm{P}(X-\bar{X})^{2}=30,000$
SD i.e., $\sigma x=\sqrt{30,000}=173.21$

## Example

Following table provides CF distribution of a 2 years project.

| Year 1 |  | Year 2 |  |
| :---: | :---: | :---: | :---: |
| CF | Probability | CF | Probability |
| 200 | 0.4 | 300 | 0.3 |
| 400 | 0.4 | 700 | 0.4 |
| 500 | 0.2 | 800 | 0.3 |

Calculate expected CF $\sum$ SD of CF for each year.

Answer :
Year 1

| CF(X) | Probability(P) | PX | $\sum \mathbf{P}(\mathbf{X}-\overline{\mathbf{X}})^{2}$ |
| :---: | :---: | :---: | :---: |
| 200 | 0.4 | 80 | 7,840 |
| 400 | 0.4 | 160 | 1,440 |
| 500 | 0.2 | 100 | 5,120 |
| Expected $\overline{\mathrm{CF}_{1}}$ |  | 340 | 14,400 |

Year 2

| CF(X) | Probability(P) | $\mathbf{P X}$ | $\sum \mathbf{P}(\mathbf{X}-\overline{\mathbf{X}})^{2}$ |
| :---: | :---: | :---: | :---: |
| 300 | 0.3 | 90 | 28,830 |
| 700 | 0.4 | 280 | 3,240 |
| 800 | 0.3 | 240 | 10,830 |
| Expected $\overline{\mathrm{CF}_{2}}$ |  | 610 | 42,900 |

$\sigma x^{2}=42,900$
$\sigma x(\mathrm{SD})=207.123$

## c. Coefficient of Variation (CV)

- Obviously, we prefer a project with higher expected NPV
- Obviously, we prefer a project with lower risk (SD)( $\sigma$ )
- However, if there is a fight between the two i.e. project with higher expected NPV also has higher risk( $\sigma$ ). We compute coefficient of variation (CU)

$$
\mathrm{CV}=\frac{\mathrm{SD}}{\text { Mean }} \times 100
$$

(Risk, return ka kya \% hai?) obviously, lower the better.

## Example

Consider the following 2 mutually exclusive projects

| Particulars | Project A | Project B |
| :---: | :---: | :---: |
| Expected NPV | 300 cr | 500 cr |
| SD of NPV | 100 cr | 150 cr |

1. Which project should be selected based on expected NPV.
2. Which project should be selected based on risk alone.
3. Considering both risk and return, which project should be selected.

## Answer :

1. Project B-Higher NPV
2. Project $A$ - Lower $S D$
3. We Should compute CV.
$\mathrm{CV}_{\mathrm{A}}=\frac{100}{300} \times 100=33.33 \%$
$\mathrm{CV}_{\mathrm{B}}=\frac{150}{500} \times 100=30 \%$

So, Project B should selected.

## Question

Shivam Ltd. is considering two mutually exclusive projects A and B. Project A costs $₹ 36,000$ and project $B$ ₹ 30,000 . You have been given below the net present value probability distribution for each project.

| Project A |  | Project B |  |
| :---: | :---: | :---: | :---: |
| NPV estimates (₹) | Probability | NPV estimates (₹) | Probability |
| 15,000 | 0.2 | 15,000 | 0.1 |
| 12,000 | 0.3 | 12,000 | 0.4 |
| 6,000 | 0.3 | 6,000 | 0.4 |
| 3,000 | 0.2 | 3,000 | 0.1 |

i. Compute the expected net present values of projects $A$ and $B$.
ii. Compute the risk attached to each project i.e. standard deviation of each probability distribution.
iii. Compute the profitability index of each project.
iv. Which project do you recommend? State with reasons.

## Answer :

i. Statement showing computation of expected net present value of Projects $A$ and $B$ :

| Project A |  |  | Project B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NPV Estimate <br> $(₹)$ | Probability | Expected <br> Value | NPV <br> Estimate | Probability | Expected <br> Value |
| 15,000 | 0.2 | 3,000 | 15,000 | 0.1 | 1,500 |
| 12,000 | 0.3 | 3,600 | 12,000 | 0.4 | 4,800 |
| 6,000 | 0.3 | 1,800 | 6,000 | 0.4 | 2,400 |
| 3,000 | 0.2 | 600 | 3,000 | 0.1 | 300 |
|  | 1.0 | $\mathrm{EV}=9,000$ |  | 1.0 | $\mathrm{EV}=9,000$ |

ii. Computation of Standard deviation of each project

Project A

| $\mathbf{P}$ | $\mathbf{X}$ | $\mathbf{( X - E V})$ | $\mathbf{P}(\mathbf{X}-\mathrm{EV})^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{0 . 2}$ | 15,000 | 6,000 | $72,00,000$ |
| $\mathbf{0 . 3}$ | 12,000 | 3,000 | $27,00,000$ |
| $\mathbf{0 . 3}$ | 6,000 | $-3,000$ | $27,00,000$ |
| $\mathbf{0 . 2}$ | 3,000 | $-6,000$ | $72,00,000$ |
|  | Variance $=1,98,00,000$ |  |  |

Standard Deviation of Project $A=\sqrt{1,98,00,000}=₹ 4,450$
Project B

| $\mathbf{P}$ | $\mathbf{X}$ | $\mathbf{( X - E V})$ | $\mathbf{P}(\mathbf{X}-\mathrm{EV})^{\mathbf{2}}$ |
| :---: | :---: | :---: | :---: |
| 0.1 | 15,000 | 6,000 | $36,00,000$ |
| 0.4 | 12,000 | 3,000 | $36,00,000$ |
| 0.4 | 6,000 | $-3,000$ | $36,00,000$ |
| 0.1 | 3,000 | $-6,000$ | $36,00,000$ |
|  | Variance $=1,44,00,000$ |  |  |

Standard Deviation of Project $B=\sqrt{1,44,00,000}=₹ 3,795$
iii. Computation of profitability of each project

Profitability index = Discount cash inflow / Initial outlay
In case of Project A : PI
$=\frac{9,000+36,000}{36,000}=\frac{45,000}{36,000}=1.25$
In case of Project B : PI
$=\frac{9,000+30,000}{30,000}=\frac{39,000}{30,000}=1.30$
iv. Measurement of risk is made by the possible variation of outcomes around the expected value and the decision will be taken in view of the variation in the expected value where two projects have the same expected value, the decision will be the project which has smaller variation in expected value. In the selection of one of the two projects $A$ and $B$, Project $B$ is preferable because the possible profit which may occur is subject to less variation (or dispersion). Much higher risk is lying with project $A$.

## Question

Possible net cash flows of Projects $A$ and $B$ and their probabilities are given as below. Discount rate is 10 per cent for both the project initially investment is ₹ 10,000 . Calculate the expected net present value for each project. Which project is preferable?

| Project A |  | Project B |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Possible <br> Event | Cash Flow <br> (₹) | Probability | Cash Flow (₹) | Probability |
| A | 8,000 | 0.10 | 4,000 | 0.10 |
| B | 10,000 | 0.20 | 20,000 | 0.15 |
| C | 12,000 | 0.40 | 16,000 | 0.50 |
| D | 14,000 | 0.20 | 12,000 | 0.15 |
| E | 16,000 | 0.10 | $8,0,000$ | 0.10 |

## Answer :

Calculation of Expected Value for Project A and Project B

| Project A |  |  |  | Project B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Possible <br> Event | Net Cash <br> Flow <br> (₹) | Probability | Expected <br> Value <br> (₹) | Cash Flow <br> (₹) | Probability | Expected Value <br> (₹) |
| A | 8,000 | 0.10 | 800 | 4,000 | 0.10 | 400 |
| B | 10,000 | 0.20 | 2,000 | 20,000 | 0.15 | 3,000 |
| C | 12,000 | 0.40 | 4,800 | 16,000 | 0.50 | 8,000 |
| D | 14,000 | 0.20 | 2,800 | 12,000 | 0.15 | 1,800 |
| E | 16,000 | 0.10 | 1,600 | 80,000 | 0.10 | 800 |
| ENCF |  |  | 12,000 |  |  | 16,000 |

The net present value for Project $A$ is $(0.909 \times ₹ 12,000-₹ 10,000)=₹ 908$
The net present value for Project $B$ is $(0.909 \times ₹ 16,000-₹ 10,000)=₹ 4,544$.

## Self Note

Calculate SD of the CF for each project - (Ye ek saal ka project hai)

## Solution :

Project A

| $\mathbf{X}$ | $\mathbf{P}$ | $\mathrm{P}(X-\bar{X})^{2}$ |
| :---: | :---: | ---: |
| 8,000 | 0.1 | $16,00,000$ |
| 10,000 | 0.2 | $8,00,000$ |
| 12,000 | 0.4 | 0 |


| 14,000 | 0.2 | $8,00,000$ |
| ---: | ---: | ---: |
| 16,000 | 0.1 | $16,00,000$ |
| Variance |  | $48,00,000$ |

$\sigma x=\sqrt{48,00,000}=2190.89$
Project B

| $\mathbf{X}$ | $\mathbf{P}$ |  |
| :---: | :---: | ---: |
| 4,000 | 0.1 | $2,95,84,000$ |
| 20,000 | 0.15 | $2,16,000$ |
| 16,000 | 0.5 | $1,35,20,000$ |
| 12,000 | 0.15 | $1,26,96,000$ |
| 80,000 | 0.1 | $34,57,44,000$ |
|  |  | $40,17,60,000$ |

$\sigma x=\sqrt{401760000}=20043.95$
Based on SD alone, project A is less risky \& preferred.

## Self Note

State your final decision and considering both risk and return.

## Solution :

$$
\mathrm{COV}=\frac{\mathrm{SD}}{\text { Mean }} \times 100
$$

|  | Project A | Project B |
| :--- | :---: | :---: |
| COV | $\frac{2190.89}{12000} \times 100=18.26 \%$ | $\frac{20044}{21200} \times 100=94.55$ |

So, project A is preferred.

## Calculation of Risk via Statistical Techniques

## Example

The following table provides a probability Distribution of NPV of a project

| NPV | Probability |
| :---: | :---: |
| $\mathbf{- 1 0}$ | 0.3 |
| $\mathbf{5}$ | 0.5 |
| $\mathbf{2 0}$ | 0.2 |

Calculate expected NPV, Standard Deviation of NPV, Coefficient of variation of NPV
Answer :

| NPV(x) | Probability (P) | Px | $\mathrm{p}(\mathrm{x}-\overline{\mathrm{x}})^{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{- 1 0}$ | 0.3 | -3 | 54.675 |
| $\mathbf{5}$ | 0.5 | 2.5 | 1.125 |
| $\mathbf{2 0}$ | 0.2 | 4 | 54.45 |
| Expected NPV |  | 3.5 | 110.25 |

$\sigma$ of $\mathrm{NPV}=\sqrt{110.25}=10.5$
Coefficient of Variation $=\frac{S D}{\text { Mean }} \times 100=\frac{10.5}{3.5} \times 100=300 \%$
This is compared to firm's risk appetite.

## Application of normal distribution

Normal distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean. In graph form, normal distribution will appear as a bell curve.


Since, Normal Distribution has 2 parameters i.e. Mean and SD, and these Parameters will be different in different situations, we use Standard Normal Distribution with a mean of 0 and SD of 1 . The process of converting $x$ into $z$ is known as Standardization given by -

$$
z=\frac{x-\mu}{\sigma}
$$

## Example

In the previous sum, what is the probability of Negative NPV if :
Case 1 : You have the Probability Distribution as given

| NPV | Probability |
| :---: | :---: |
| -10 | 0.3 |
| 5 | 0.5 |
| 20 | 0.2 |

Case 2 : NPV follows a Normal Distribution with Mean $=3.5$ and $S D=10.5$.
Answer :
Case 1 : Probability of Negative NPV = 30\%

## Case 2 :



Probability $=0.3707$ ( calculated from Excel Sheet command : Normsdist(-0.33))

## Conventional Techniques

Project risky hai....... I don't like it because I am fattu. I will penalize the project..... Agni Pariksha. If it still provides positive NPV, it is accepted.

## Method I

## Certainty Equivalent Approach $(\alpha)$

## Step 1 :



## Step 2:

Certain Equivalent CF $=\alpha \times \overline{\mathrm{CF}}$
Where, $\alpha=$ certainty equivalent coefficient
(Ek rupiya jo uncertain hai uske badle kitna rupya certain chahiye) $\Rightarrow$ Say $\alpha=0.9$

## Step 3 :

Agni pariksha Step 2 me hogaya $\Rightarrow$ Aab NPV nikalo. Rf (Risk free) discount rate use karke

| Years | Expected CF | $\alpha \times$ Expected CF | Df @ Rf | PV |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  | $\times \times$ |
|  |  |  |  | $(-)$ II |
|  |  |  | $\times \times)$ |  |
|  |  |  | Expected NPV | $\times \times$ |

## Example

Consider a 3 year project with II = 500 cr . CFs each year are uncertain and have the following distribution :

| Year 1 |  | Year 2 |  | Year 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CF | Probability | CF | Probability | CF | Probability |
| 100 | 0.4 | 200 | 0.2 | 300 | 0.1 |
| 120 | 0.5 | 240 | 0.5 | 390 | 0.4 |
| 200 | 0.1 | 300 | 0.3 | 420 | 0.5 |

Firm decided to use certainty equivalent method. The Certainty equivalent coefficients are given by
$\alpha_{t}=1-0.1 \mathrm{t}(\mathrm{t}=1,2$, and 3$)$
$R f=7 \%$ and $K c=15 \%$.

Show the process of evaluation of the project.

## Answer :

Step 1 : Calculation of expected CF each year.
$\overline{\mathrm{CF}}_{1}=0.4 \times 100+0.5 \times 120+0.1 \times 200=120$
$\overline{\mathrm{CF}_{2}}=0.2 \times 200+0.5 \times 240+0.3 \times 300=250$
$\overline{\mathrm{CF}_{3}}=300 \times 0.1+0.4 \times 390+0.5 \times 420=396$
Step 2 : Calculation of $\alpha$
$\alpha_{1}=1-0.1 \times 1=0.9$
$\alpha_{2}=1-0.1 \times 2=0.8$
$\alpha_{3}=1-0.1 \times 3=0.7$
Step 3 : Expected NPV using Rf $=\mathbf{7 \%}$ as discuss

| Year | Expected CF | $\alpha \times$ Expected CF | PV | df@Rf |
| :---: | :---: | :---: | :---: | :---: |
|  | 120 | 108 | 100.9 | 0.93 |
|  | 250 | 200 | 174.68 | 0.8734 |
|  | 396 | 277.2 | 226.27 | 0.8163 |
|  |  |  | 501.88 | 0.8163 |
|  |  | $(-) I I$ | $(500)$ |  |
|  |  |  | $₹ 1.88 \mathrm{cr}$. |  |

Since NPV is positive, project is viable.

## Self Note

Bujho/Samjho to Jane

- Higher the risk - lower the $\alpha$
- Higher the level of risk aversion ( mein high level ka fattu hu) - lower the $\alpha$


## Method 2 <br> Risk Adequate Discount Rate (RADR)

## Step 1 : Expected CF

Student Comment - Aur kitna baar?
Step 2 : RADR se tangee
Case I: RADR given.
Case II : RADR = Kc + Differential Risk Premium (Co mein already normal risk hai... is project mein perhaps differential risk hai)

Case III : RADR $=$ Rf + Risk Premium
Case IV : RADR = Based on Cov

Case V : RADR = Rf + (Kc - Rf) RI = 7\% + (15\% - 7\%) RI
where RI - Risk index of the project i.e. project risk co ke risk ka kitna times hai (0.8 ya 12. times)

## Example

Ignore the information on $\alpha$ Use RADR method to evaluate the project:
Case I: RADR = 19\%
Case II : This project has higher risk compared to normal risk of the firm. So a differential risk premium of 2\% should be used.

Case III : Risk premium on the project $=11 \%$
Case IV : Projects COV is 0.25
Management has provided the following table for RADR

| COV | RADR |
| :---: | :---: |
| 0 | 7 |
| 0.25 | 14 |
| 0.5 | 19 |
| 0.75 | 28 |

Case V : Risk Index of the project $=1.2$

## Answer :

## Case I

## Step 1 : Expected CF already Calculated

Step 2 : Expected NPV using RADR = 19\%

| Year | Expected CF | Df @ 19\% | PV |
| :---: | :---: | ---: | ---: |
| 1 | 120 | 0.8403 | 100.836 |
| 2 | 250 | 0.7062 | 176.5 |
| 3 | 396 | 0.5934 | 234.99 |
|  |  |  | 512.386 |
|  |  | $(-)$ II | $(500)$ |
|  |  | NPV | 12.38 cr. |

## Project is accepted

## Case II

RADR $=15 \%+2 \%(K c+2 \%)=17 \%$

| Year | Expected CF | df@17\% | PV |
| :---: | :---: | :---: | :---: |
| 1 | 120 | 0.8547 | 103 |
| 2 | 250 | 0.7305 | 183 |
| 3 | 396 | 0.6244 | 247 |
|  |  |  | 533 |



Project is Accepted.
Case IV
RADR $=14 \%$ (Since Cov $=0.25$ RADR $=14 \%$ )

| Year | Expected CF | Df @ 14\% | PV |
| :---: | :---: | :---: | :---: |
| 1 | 120 | 0.8772 | 105 |
| 2 | 250 | 0.7695 | 192 |
| 3 | 390 | 0.6750 | 263 |
|  |  |  | 560 |
|  |  | $(-)$ II | $(500)$ |
|  |  | NPV | 60 cr. |

## Project is Accepted

## Case V

$R A D R=R f+(K c-R f) R I=7+(15-7) 1.2=16.6 \%$

| Year | Expected CF | df@16.6\% | PV |
| :---: | :---: | :---: | :---: |
| 1 | 120 | 0.8576 | 103 |
| 2 | 250 | 0.7355 | 183 |
| 3 | 396 | 0.6308 | 250 |
|  |  |  | 536 |
|  |  | $(-I I)$ | $(500)$ |
|  |  | NPV | 36 cr. |

Project is Accepted

## Example

|  | Project A | Project B |
| :---: | :---: | :---: |
| Year | $\alpha$ | $\alpha$ |
| 1 | 0.9 | 0.85 |
| 2 | 0.8 | 0.75 |
| 3 | 0.7 | 0.65 |

Which project should be analysed with a higher RADR?

## Answer :

Since project B has lower $\alpha$, it is more risky. So, higher RADR should be used in Project B.

## Question

Probabilities for net cash flows for 3 years a project are as follows:

| Year 1 |  | Year 2 |  | Year 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cash Flow <br> $(₹)$ | Probability | Cash Flow <br> $(₹)$ | Probability | Cash Flow <br> $(₹)$ | Probability |
| 2,000 | 0.1 | 2,000 | 0.2 | 2,000 | 0.3 |
| 4,000 | 0.2 | 4,000 | 0.3 | 4,000 | 0.4 |
| 6,000 | 0.3 | 6,000 | 0.4 | 6,000 | 0.2 |
| 8,000 | 0.4 | 8,000 | 0.1 | 8,000 | 0.1 |

Calculate the expected net cash flows. Also calculate the present value of the expected cash flow, using 10 per cent discount rate. Initial Investment is ₹ 10,000.

Answer:

| Year 1 |  |  | Year 2 |  | Year 3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Cash } \\ & \text { Flow } \end{aligned}$ | Probability | Expected Value | Cash <br> Flow | Probability | Expected Value | Cash <br> Flow | Probability | Expected Value |
| (₹) |  | (₹) | (₹) |  | (₹) | (₹) |  | (₹) |
| 2,000 | 0.1 | 200 | 2,000 | 0.2 | 400 | 2,000 | 0.3 | 600 |
| 4,000 | 0.2 | 800 | 4,000 | 0.3 | 1200 | 4,000 | 0.4 | 1,600 |
| 6,000 | 0.3 | 1,800 | 6,000 | 0.4 | 2400 | 6,000 | 0.2 | 1,200 |
| 8,000 | 0.4 | 3,200 | 8,000 | 0.1 | 800 | 8,000 | 0.1 | 800 |
| ENCF |  | 6,000 |  |  | 4,800 |  |  | 4,200 |

The present value of the expected value of cash flow at 10 per cent discount rate has been determined as follows:

Present Value of cash flow : $\frac{\mathrm{ENCF}_{1}}{(1+\mathrm{K})^{1}}+\frac{\mathrm{ENCF}_{2}}{(1+\mathrm{K})^{2}}+\frac{\mathrm{ENCF}_{3}}{(1+\mathrm{K})^{3}}$

$$
\begin{aligned}
& =\frac{6,000}{(1.1)^{2}}+\frac{4,800}{(1.1)^{2}}+\frac{4,200}{(1.1)^{3}} \\
& =(6,000 \times 0.909)+(4,800 \times 0.826)+(4,200+0.751)=12,573
\end{aligned}
$$

Expected Net Present value $=$ Present Value of cash flow - Initial Investment
= ₹ 12,573-₹10,000 = ₹2,573.

## Question

An enterprise is investing ₹ 100 lakhs in a project. The risk-free rate of return is $7 \%$. Risk premium expected by the Management is $7 \%$. The life of the project is 5 years. Following are the cash flows that are estimated over the life of the project.

| Year | Cash flows (₹ in lakhs) |
| :---: | :---: |
| 1 | 25 |
| 2 | 60 |
| 3 | 75 |
| 4 | 80 |
| 5 | 65 |

Calculate Net Present Value of the project based on Risk free rate and also on the basis of Risks adjusted discount rate.

## Answer :

|  | At rf |  |  | At RADR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | CF | df@7\% | PV | df@14\% | PV |
| 1 | 25 | 0.9346 | 23 | 0.8772 | 20 |
| 2 | 60 | 0.8734 | 52 | 0.7695 | 40 |
| 3 | 75 | 0.8163 | 61 | 0.6750 | 41 |
| 4 | 80 | 0.7629 | 61 | 0.5921 | 36 |
| 5 | 65 | 0.7129 | 46 | 0.5193 | 24 |
|  |  |  | 243 |  | 161 |
|  | (-) II |  | (100) | (-)II | (100) |
|  | NPV |  | 143 lacs | NPV | 61 lacs |

Self
Risk free rate $=7 \%$
Risk premium $=7 \%$
$\therefore$ RADR $=7+7=14 \%$

## Question

If Investment Proposal is ₹ $45,00,000$ and risk free rate is $5 \%$, calculate Net present value under certainty equivalent technique.

| Year | Expected cash flow (₹) | Certainty Equivalent coefficient |
| :---: | :---: | :---: |
| 1 | $10,00,000$ | 0.90 |

## SSEI

A positive NPV Training Center

| 2 | $15,00,000$ | 0.85 |
| :---: | :---: | :---: |
| 3 | $20,00,000$ | 0.82 |
| 4 | $25,00,000$ | 0.78 |

Answer :

| Year | Expected CF | $\alpha$ | $\alpha \times$ Expected CF | Df @ 5\% | PV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1000 | 0.9 | 900 | 0.9524 | 857.16 |
| 2 | 1500 | 0.85 | 1275 | 0.9070 | 1156.425 |
| 3 | 2000 | 0.82 | 1640 | 0.8638 | 1416.632 |
| 4 | 2500 | 0.78 | 1950 | 0.8227 | 1604.265 |
|  |  |  |  |  | 5034.482 |

$\therefore P V \quad=50,34,482$
$(-)$ II $=45,00,000$
$N P V=5,34,482$

## Question

The Textile Manufacturing Company Ltd., is considering one of two mutually exclusive proposals, Projects $M$ and $N$, which require cash outlays of $₹ 8,50,000$ and $₹ 8,25,000$ respectively. The certainty-equivalent (C.E) approach is used in incorporating risk in capital budgeting decisions. The current yield on government bonds is $6 \%$ and this is used as the risk free rate. The expected net cash flows and their certainty equivalents are as follows:

|  | Project M |  | Project N |  |
| :---: | :---: | :---: | :---: | :---: |
| Year end | Cash Flow (₹) | C.E. | Cash Flow (₹) | C.E. |
| 1 | $4,50,000$ | 0.8 | $4,50,000$ | 0.9 |
| 2 | $5,00,000$ | 0.7 | $4,50,000$ | 0.8 |
| 3 | $5,00,000$ | 0.5 | $5,00,000$ | 0.7 |

Present value factors of $₹ 1$ discounted at $6 \%$ at the end of year 1,2 and 3 are $0.943,0.890$ and 0.840 respectively.

Required:
i. Which project should be accepted?
ii. If risk adjusted discount rate method is used, which project would be appraised with a higher rate and why?

## Answer :

i. Statement Showing the Net Present Value of Project M

| Year end | Cash Flow (₹) <br> (a) | C.E. | Adjusted Cash <br> flow (₹) | Present value <br> factor at <br> $\mathbf{6 \%}(\mathrm{d})$ | Total Present <br> value $(\overline{\mathrm{F}})$ <br> (e) $=(\mathrm{c}) \times(\mathrm{d})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $4,50,000$ | 0.8 | $3,60,000$ | 0.943 | $3,39,480$ |
| 2 | $5,00,000$ | 0.7 | $3,50,000$ | 0.890 | $3,11,500$ |


| 3 | $5,00,000$ | 0.5 | $2,50,000$ | 0.840 | $2,10,000$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $8,60,980$ |
| Less: Initial Investment |  |  |  |  |  |
| Net Present Value |  |  |  |  |  |

Statement Showing the Net Present Value of Project N

| Year end | Cash Flow (₹) <br> (a) | C.E. <br> (b) | Adjusted Cash flow (₹) $(c)=(a) \times(b)$ | Present value factor at 6\%(d) | $\begin{gathered} \hline \text { Total Present } \\ \text { value (₹) } \\ (\mathrm{e})=(\mathrm{c}) \times(\mathrm{d}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4,50,000 | 0.9 | 4,05,000 | 0.943 | 3,81,915 |
| 2 | 4,50,000 | 0.8 | 3,60,000 | 0.890 | 3,20,400 |
| 3 | 5,00,000 | 0.7 | 3,50,000 | 0.840 | 2,94,000 |
|  |  |  |  |  | 9,96,315 |
| Less: Initial Investment |  |  |  |  | 8,25,000 |
| Net Present Value |  |  |  |  | 1,71,315 |

Decision : Since the net present value of Project N is higher, so the project N should be accepted.
ii. Certainty - Equivalent (C.E.) Co-efficient of Project $M$ (2.0) is lower than Project $N$ (2.4). This means Project M is riskier than Project N as "higher the riskiness of a cash flow, the lower will be the CE factor". If risk adjusted discount rate (RADR) method is used, Project $M$ would be analysed with a higher rate.

## Question

Determine the risk adjusted net present value of the following projects:

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :---: | :---: | :---: |
| Net cash outlays (₹) | $2,10,000$ | $1,20,000$ | $1,00,000$ |
| Project life | 5 years | 5 years | 5 years |
| Annual Cash inflow (₹) | 70,000 | 42,000 | 30,000 |
| Coefficient of variation | 1.2 | 0.8 | 0.4 |

The Company selects the risk-adjusted rate of discount on the basis of the coefficient of variation:

| Coefficient of <br> Variation | Risk-Adjusted Rate of Return | P.V. Factor $\mathbf{1}$ to 5 years At risk <br> adjusted rate of <br> discount |
| :---: | :---: | :---: |
| 0.0 | $10 \%$ | 3.791 |
| 0.4 | $12 \%$ | 3.605 |
| 0.8 | $14 \%$ | 3.433 |
| 1.2 | $16 \%$ | 3.274 |
| 1.6 | $18 \%$ | 3.127 |
| 2.0 | $22 \%$ | 2.864 |
| More than 2.0 | $25 \%$ | 2.689 |

## Answer :

Statement showing the determination of the risk adjusted net present value

| Projects | Net <br> cash <br> outlays | Coefficient <br> of <br> variation | Risk <br> adjusted <br> discount <br> rate | Annual <br> cash <br> inflow | PV factor <br> 1-5 years | Discounted <br> cash inflow | Net <br> present <br> value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (i) | (₹) |  | (ii) | (ii) | (iv) | (v) | (vi) |
| X | $2,10,000$ | 1.20 | $16 \%$ | 70,000 | 3.274 | $2,29,180$ | $(₹)$ |
| Y | $1,20,000$ | 0.80 | $14 \%$ | 42,000 | 3.433 | $1,44,186$ | 24,186 |
| Z | $1,00,000$ | 0.40 | $12 \%$ | 30,000 | 3.605 | $1,08,150$ | 8,150 |

## Question

Gauav Ltd. using certainty-equivalent approach in the evaluation of risky proposals. The following information regarding a new project is as follows:

| Year | Expected Cash flow | Certainty-equivalent quotient |
| :---: | :---: | :---: |
| 0 | $(4,00,000)$ | 1.0 |
| 1 | $3,20,000$ | 0.8 |
| 2 | $2,80,000$ | 0.7 |
| 3 | $2,60,000$ | 0.6 |
| 4 | $2,40,000$ | 0.4 |
| 5 | $1,60,000$ | 0.3 |

Riskless rate of interest on the government securities is 6 per cent. DETERMINE whether the project should be accepted?

## Answer:

Determination of Net Present Value (NPV)

| Year | Expected <br> Cash flow (₹) | Certainty- <br> equivalent <br> (CE) | Adjusted Cash flow <br> (Cash flow $\times$ CE) (₹) |  | PV factor <br> (at 0.06) |
| :---: | :---: | :---: | :---: | :---: | ---: |
| 0 | $(4,00,000)$ | 1.0 | $(4,00,000)$ | Total PV <br> (₹) |  |
| 1 | $3,20,000$ | 0.8 | $2,56,000$ | 0.943 | $(4,00,000)$ |
| 2 | $2,80,000$ | 0.7 | $1,96,000$ | 0.890 | $1,74,440$ |
| 3 | $2,60,000$ | 0.6 | $1,56,000$ | 0.840 | $1,31,040$ |
| 4 | $2,40,000$ | 0.4 | 96,000 | 0.792 | 76,032 |
| 5 | $1,60,000$ | 0.3 | 48,000 | 0.747 | 35,856 |
| NPV $=(6,58,776-4,00,000)$ |  |  | $2,58,776$ |  |  |

As the Net Present Value is positive the project should be accepted.

## Question

Following information have been retrieved from the finance department of Corp Finance Ltd. relating to Projects $X, Y$ and $Z$ :

| Particulars | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :--- | :---: | :---: | :---: |
| Net cash outlays (₹) | $42,00,000$ | $24,00,000$ | $20,00,000$ |
| Project life | 5 years | 5 years | 5 years |
| Annual Cash inflow (₹) | $14,00,000$ | $8,40,000$ | $6,00,000$ |
| Coefficient of variation | 2.0 | 0.8 | 1.6 |

You are required to determine the risk adjusted net present value of the projects considering that the Company selects risk-adjusted rate of discount on the basis of the coefficient of variation:

| Coefficient of <br> Variation | Risk-Adjusted <br> Rate of Return | P.V. Factor $\mathbf{1}$ to 5 years at <br> risk adjusted rate of discount |
| :---: | :---: | :---: |
| 0.0 | $8 \%$ | 3.992 |
| 0.4 | $10 \%$ | 3.790 |
| 0.8 | $12 \%$ | 3.604 |
| 1.2 | $14 \%$ | 3.433 |
| 1.6 | $16 \%$ | 3.274 |
| 2.0 | $20 \%$ | 2.990 |
| More than 2.0 | $22 \%$ | 2.863 |

## Answer :

Statement showing the determination of the risk adjusted net present value

| Projects | Net cash <br> outlays | Coefficient <br> of <br> variation | Risk <br> adjusted <br> discount <br> rate | Annual cash <br> inflow | PV <br> factor <br> $\mathbf{1 - 5}$ <br> years | Discounted <br> cash <br> inflow | Net <br> present <br> value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (i) | (₹) |  |  | $(\boldsymbol{₹})$ |  | (₹) | (₹) |
| (ii) | (iii) | (iv) | (v) | (vi) | (vii) $=(\mathbf{v}) \times$ <br> (vi) | (viii) $=$ <br> (vii)-(ii) |  |
| X | $42,00,000$ | 2.0 | $20 \%$ | $14,00,000$ | 2.990 | $41,86,000$ | $-14,000$ |
| Y | $24,00,000$ | 0.8 | $12 \%$ | $8,40,000$ | 3.604 | $30,27,360$ | $6,27,360$ |
| Z | $20,00,000$ | 1.6 | $16 \%$ | $6,00,000$ | 3.274 | $19,64,400$ | $-35,600$ |



## Sensitivity Analysis (Most Important topic)

## Part I Theory

1. It is a risk analysis tool
2. It involves finding out the sensitivity of NPV w.r.t. each risk factor, ceteris paribus
3. Steps in Sensitivity:

Step 1 : Calculate expected NPV
Step 2 : Now shock each risk factor in the adverse direction by a certain \% and find out the percentage fall in NPV
Step 3 : Conclusion - The factor which causes maximum percentage fall in NPV is critical factor.

## Part II : Practical

## Example

Annual CF $=40,000$
Number of years $=5$
$K_{\mathrm{c}}=15 \%$
Initial Investment = 1,20,000
Carry out Sensitivity analysis of NPV w.r.t -
a. Annual CF
b. $K_{c}$
c. Initial Investment

Take a shock of $20 \%$. Which is the most critical factor

## Answer :

Step 1 : Expected NPV $=40,000 \times \operatorname{PVAF}(15 \%, 5)-I I=40,000 \times 3.3522-1,20,000=14088$
Step 2 : Sensitivity Analysis
a. w.r.t CF

CF $\downarrow 20 \%$
$\therefore$ CF 40,000 $\times 0.8=32,000$
$\therefore$ NPV $=32,000 \times 3.3522-1,20,000=-12,730$
Percentage fall in NPV

$$
=\frac{14086-(-12730)}{14086} \times 100=190 \% \text { (bhayanaak) }
$$

b. w.r.t Kc

Kc $\uparrow 20 \%$
$\therefore$ Kc $\quad=15 \% \times 1.2=18 \%$
$\therefore$ NPV $\quad=40,000 \times \operatorname{PVAF}(18 \%, 5)-1,20,000$

$$
=40,000 \times 3.1272-1,20,000=5088
$$

Percentage fall in NPV $=\frac{14086-5088}{14086} \times 100=64 \%$
c. w.r.t Initial Investment

II $\uparrow$ 20\%
II = 1,44,000
$\therefore$ NPV $=40,000 \times 3.3522-1,44,000=-9912$
Percentage fall in NPV $=\frac{14086-(-9912)}{14086} \times 100=170 \%$

Conclusion : Cash flow is the most critical factor

## Question

From the following details relating to a project, analyse the sensitivity of the project to changes in initial project cost, annual cash inflow and cost of capital :

| Initial Project Cost (₹) | $1,20,000$ |
| :--- | ---: |
| Annual Cash Inflow (₹) | 45,000 |
| Project Life (Years) | 4 |
| Cost of Capital | $10 \%$ |

To which of the three factors, the project is most sensitive if the variable is adversely affected by $10 \%$ ? (Use annuity factors: for $10 \% 3.169$ and $11 \%$... 3.103).

## Answer :

Calculation of NPV through Sensitivity Analysis

|  | (₹) |
| :--- | ---: |
| PV of cash inflows (₹ $45,000 \times 3.169)$ | $1,42,605$ |
| Initial Project Cost | $(1,20,000)$ |
| NPV | 22,605 |


| Situation | NPV |  |
| :--- | :--- | :--- |
| Base(present) | ₹ 22,605 |  |
| If initial project cost is varied |  |  |
| adversely by $10 \%$ |  |  | | (₹ $1,42,605-₹ 1,32,000$ ) |
| :--- |
| = ₹ 10,605 |$\quad$| (₹ $22,605-₹ 10,605$ )/₹22,605 $=$ |
| :--- |
| $(53.08 \%)$ |

## SSEI

A positive NPV Training Center

| If annual cash inflow is <br> varied adversely by $10 \%$ | $[₹ 40,500$ (revised cash flow) <br> $\times 3.169)-(₹ 1,20,000)]$ <br> $=₹ 8,345$ | $(₹ 22,605-₹ 8,345) / ₹ 22,605$ <br> $=63.08 \%$ |
| :--- | :--- | :--- |
| If cost of capital is varied <br> adversely by $10 \%$ i.e. it <br> becomes $11 \%$ | $(₹ 45,000 \times 3.103)-₹ 1,20,000$ <br> $=₹ ~$ | (₹ 22,635 <br> $=13.14 \%$ |

Conclusion : Project is most sensitive to 'annual cash inflow'

## Question

XYZ Ltd. is considering a project " $A$ " with an initial outlay of ₹ $14,00,000$ and the possible three cash inflow attached with the project as follows :

| Particular | Year 1 | Year 2 | Year 3 |
| :--- | :---: | :---: | :---: |
| Worst case | 450 | 400 | 700 |
| Most likely | 550 | 450 | 800 |
| Best case | 650 | 500 | 900 |

Assuming the cost of capital as 9\%, determine NPV in each scenario. If XYZ Ltd is certain about the most likely result but uncertain about the third year's cash flow, what will be the NPV expecting worst scenario in the third year.

## Answer :

The possible outcomes will be as follows:

| Year | PVF <br> @ 9\% | Worst Case |  | Most likely |  | Best case |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cash Flow (₹ 000) | $\begin{gathered} \text { PV } \\ (₹ 000) \end{gathered}$ | Cash <br> Flow (₹ 000) |  | Cash Flow (₹ 000) |  |
| 0 | 1 | (1400) | (1400) | (1400) | (1400) | (1400) | (1400) |
| 1 | 0.917 | 450 | 412.65 | 550 | 504.35 | 650 | 596.05 |
| 2 | 0.842 | 400 | 336.80 | 450 | 378.90 | 500 | 421.00 |
| 3 | 0.772 | 700 | 540.40 | 800 | 617.60 | 900 | 694.80 |
| NPV |  |  | -110.15 |  | 100.85 |  | 311.85 |

Now suppose that CEO of XYZ Ltd. is bit confident about the estimates in the first two years, but not sure about the third year's high cash inflow. He is interested in knowing what will happen to traditional NPV if 3rd year turn out the bad contrary to his optimism.

The NPV in such case will be as follows:

$$
=-₹ 14,00,000+\frac{5,50,000}{(1+0.09)}+\frac{4,50,000}{(1+0.09)^{2}}+\frac{7,00,000}{(1+0.09)^{3}}
$$

$$
=-₹ 14,00,000+₹ 5,04,587+₹ 3,78,756+₹ 5,40,528=₹ 23,871
$$

Elasticity Nikalo.

> Life(n) ko sensitivity ke sum mein generally shock nahi dete -4 ?
> Kyunki lefe (n) integer hona zaruri hai. If $n=4,10 \%$ shock means $=3.6$ (solve kar nahi payenge) of course agar $25 \% \downarrow$ shock de, toh $n=3$ (solve hoga)

## Criticism of Sensitivity i.e. drawback of sensitivity

How can we shock one factor at a time keeping other constant?
Scenario Analysis - (Isse chomu topic is dharti pe paida nahi hua)

## Imagine Different Scenarios

| Particulars | Pessimistic Scenario | Most likely scenario | Optimistic Scenario |
| :---: | :---: | :---: | :---: |
| Annual CF | 30,000 | 40,000 | 50,000 |
| Life | 4 years | 5 years | 7 years |
| Kc | $18 \%$ | $14 \%$ | $12 \%$ |
| II | $1,10,000$ | $1,00,000$ | 90,000 |

Calculate NPV under each scenario.

## Pessimistic Scenario :

$N P V=30,000 \times \operatorname{PVAF}(18 \%, 4)-1,10,000=-29,298$
Most likely scenario :
$N P V=40,000 \times \operatorname{PVAF}(14 \%, 5)-1,00,000=37,323$
Optimistic Scenario :
$N P V=50,000 \times \operatorname{PVAF}(12 \%, 7)-90,000=1,38,188$
Also suppose management feels that most likely scenario will occur but Kc will be that of Pessimist Scenario
Find NPV and advice

```
Annual CF = 40,000
Life = 5 years
Kc = 18%
II = 1,00,000
NPV = 40,000 x PVAF (18%,5) - 1,00,000
    = 25,087
```

Project is accepted

